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論文要旨

高齢化，危険作業の自動化といった課題に対処するため，物理的な身体を
持ち実世界と相互作用するエージェントを開発する Embodied AIが注目され
ている．その中でも，Vision-and-Language Navigation（VLN）は目的地への
移動を行うタスクであり，家庭用ロボットや自動運転への応用が期待されて
いるが，既存のVLNタスクは静的環境を前提としており，動的要因や長期的
変化を十分に反映していない．また，都市環境の連続的変化を記録したデー
タセットも不足している．本研究では，屋外環境での認識とナビゲーション
を基に，環境認識の向上と動的環境適応の課題に挑む．具体的には，ランド
マーク物体を正確に認識するナビゲーション手法を開発し，長期間にわたる
街路変化を記録したデータセットを構築する．さらに，動的な交通や歩行者
を考慮したナビゲーションタスクを定義し，エージェントが環境変化に適応
する手法を提案する．
第 1章では，VLNと変化認識の背景と位置付けについて述べる．現実世

界の複雑な環境において，従来手法が抱える課題を明確化し，本研究の目的
と解決すべき問題を提示する．特に，静的環境を前提とした既存の VLNモ
デルの限界や，動的および長期的変化への適応能力の欠如に焦点を当てる．
第 2章では，屋外環境におけるナビゲーションタスクにおいて，ランドマー
ク物体を利用した VLNモデルを提案する．エージェントが環境中の物体情
報を活用することで，従来手法によって生じる旋回場所や停止場所の判断ミ
スを改善し，ナビゲーション精度の向上を実現する．第 3章では，長期間に
わたる屋外環境の変化を認識するための新たなデータセットを構築する．本
データセットは，環境の連続的かつ長期的な進化を記録し，従来の静的環境
に依存するデータセットの限界を克服することを目指している．さらに，こ
のデータセットが変化領域の分割や記述といった複数のタスクを提案する．
第 4章では，既存の VLNタスクを拡張し，動的な交通状況や天候などの要
因を考慮した新たなナビゲーションタスクを定義する．また，これらの動的
要因に対応可能な手法を提案し，エージェントがリアルタイムで環境の変化
に適応できる能力を強化する．第 5章では，本研究の成果をまとめ，提案手
法およびデータセットが現実世界におけるナビゲーションや変化認識タスク
に与える影響について議論する．さらに，今後の課題と展望について述べる．
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Abstract

To address challenges such as aging populations and the automation of hazardous

tasks, Embodied AI, which develops agents equipped with physical bodies capa-

ble of interacting with the real world, has gained significant attention. Among its

applications, Vision-and-Language Navigation (VLN) stands out as a task involv-

ing navigation to a destination based on natural language instructions. While VLN

holds promise for applications such as household robots and autonomous driving,

existing tasks assume static environments, failing to adequately reflect dynamic

factors or long-term changes. Additionally, datasets capturing continuous changes

in urban environments remain insufficient. This study tackles the challenges of

improving environmental recognition and understanding and adapting to dynamic

environments in outdoor settings. Specifically, it develops a navigation method

that accurately recognizes landmark objects and constructs a dataset documenting

long-term street changes. Furthermore, it defines navigation tasks that account for

dynamic traffic and pedestrians and proposes methods enabling agents to adapt to

environmental changes.

Chapter 1 provides an overview of the background and positioning of VLN

and change recognition. It highlights the challenges of existing methods in han-

dling complex real-world environments and identifies the objectives and problems

this research aims to address, with a focus on overcoming the limitations of static

VLN models and their lack of adaptability to dynamic and long-term changes.

Chapter 2 proposes a VLN model that leverages landmark objects for outdoor

navigation tasks. By utilizing object information in the environment, the model

aims to improve the accuracy of navigation, addressing issues such as incorrect

decisions at turning and stopping points in existing methods. The effectiveness

of the proposed model is validated through evaluations on established benchmark

datasets. Chapter 3 focuses on the construction of a novel dataset to recognize

long-term changes in outdoor environments. This dataset records continuous and

long-term evolution in the environment and aims to overcome the limitations of

conventional static datasets. Additionally, this dataset supports multiple tasks,

such as change region segmentation and description. Chapter 4 extends existing
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VLN tasks by defining a new navigation task that considers dynamic factors like

traffic and weather. Methods are proposed to address these dynamic factors, en-

hancing the agent’s ability to adapt to real-time changes in the environment. The

effectiveness of the proposed methods is demonstrated through experiments con-

ducted in dynamic scenarios. Chapter 5 summarizes the outcomes of this study

and discusses the impact of the proposed methods and datasets on real-world nav-

igation and change recognition tasks. Future challenges and research directions

are also outlined.
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Chapter 1

Introduction

The concept of Vision-and-Language Navigation (VLN)―a task where intelligent

agents interpret natural language instructions to navigate real-world environments

―has become an essential focus within Embodied AI. As AI-driven automation

becomes more deeply integrated into daily life, VLN holds immense potential for

applications such as household assistance, autonomous delivery, and disaster re-

sponse. For instance, agents equipped with VLN capabilities can guide household

robots to specific locations, direct autonomous vehicles through complex urban

environments, and assist search-and-rescue robots in interpreting mission-critical

instructions. However, real-world navigation presents fundamental challenges,

requiring agents to process multimodal inputs, handle fine-grained visual details,

and adapt to dynamic environments.

This chapter explores the background, current advancements, and fundamen-

tal challenges of VLN, highlighting its pivotal role within Embodied AI. Vision-

Language Models (VLMs) and Multimodal Large Language Models (MLLMs)

serve as foundational technologies for VLN, enabling agents to align natural lan-

guage instructions with visual perceptions. Despite their success in controlled

settings, these models face significant challenges in three key areas: their lim-

ited sensitivity to fine-grained environmental details, the lack of datasets that ac-

count for long-term environmental changes, and their inability to adapt to dy-

namic, evolving environments. To bridge these gaps, this study focuses on three

core advancements to improve VLN adaptability and robustness. First, an object-
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aware recognition method is introduced to enhance navigation accuracy by lever-

aging landmark objects along the route, ensuring more precise decision-making.

Second, a dataset capturing long-term environmental changes is developed, al-

lowing agents to recognize and adapt to evolving landscapes by understanding

temporal consistency across different time frames. Finally, a novel VLN task and

adaptive methods are proposed to equip agents with the ability to handle real-

time decision-making under dynamic conditions, incorporating multimodal cues

to navigate unpredictable environments involving moving traffic, pedestrians, and

varying weather conditions.

By addressing these aspects, this research aims to push the boundaries of VLN,

making it more robust and applicable to the complexities of real-world scenarios.

1.1 Background

Vision-and-Language Navigation (VLN) requires agents to follow language in-

structions to understand the environment and navigate through the environment.

This task lies at the intersection of natural language understanding, computer vi-

sion, and robotics, requiring agents to integrate linguistic instructions with visual

perception to navigate complex environments. Figure 1.1 shows an example of a

VLN task, allowing agents to navigate in the urban environment according to in-

structions. This integration makes VLN a unique and challenging task, especially

in real-world scenarios characterized by dynamic changes and diverse multimodal

inputs.

1.1.1 Current Progress in VLN

Over the past few years, Vision-and-Language Navigation (VLN) has made sig-

nificant progress, primarily driven by advances in deep learning, multimodal mod-

eling, and the availability of benchmark datasets. Early VLN methods relied heav-

ily on rule-based systems [1], which used predefined heuristics and handcrafted

features to interpret navigation instructions. Although these approaches offered

initial insights into aligning language and navigation, they were fundamentally

2



Instruction: 
Turn left at the lights. Go to the second set 
of lights and turn right. HSBC should be on 
the left corner. Follow this street almost to 
the end. You will pass Five Guys on your left 
and then Sam Ash Music and West Side 
Jewish Center on the right. You will then 
come to a parking area on the right. 
Stop just before this ends.

Start

Stop

Figure 1.1 An Example of Vision-and-Language Navigation Task.

limited in their scalability and adaptability to diverse and unstructured environ-

ments [2, 3, 4].

The introduction of deep learning models, particularly Transformers, signifi-

cantly improved navigation performance by enhancing the alignment of language

and visual observations. Recent approaches leveraging Vision-Language Mod-

els (VLMs) and Multimodal Large Language Models (MLLMs) have greatly im-

proved agents’ ability to align natural language instructions with visual obser-

vations. These models integrate sophisticated visual feature extractors, such as

convolutional neural networks (CNNs) [5] or vision transformers (ViTs) [6], with

language encoders, enabling agents to interpret and execute complex instruc-

tions. For example, VLMs have demonstrated strong performance on benchmark

datasets such as Room-to-Room (R2R) [7], which involves indoor navigation, and

TOUCHDOWN [2], which focuses on navigation in urban environments.

Regarding modeling techniques, attention mechanisms [8, 9] have played a

crucial role in improving the alignment between linguistic instructions and vi-
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sual perceptions. By selectively focusing on relevant visual or linguistic features,

attention-based models have enhanced agents’ understanding of both the envi-

ronment and the task context. Additionally, reinforcement learning methods [10]

have been employed to optimize sequential decision-making, allowing agents to

learn robust navigation policies through trial and error.

Despite these advancements, much of the progress has been confined to static

or highly controlled environments. The focus on pre-defined routes or instruc-

tions in datasets like R2R and TOUCHDOWN has helped standardize evaluation

protocols but often fails to reflect the complexities of real-world scenarios. For

instance, dynamic factors such as moving pedestrians, changing weather condi-

tions, or evolving traffic patterns are typically absent in these datasets. Similarly,

while agents have shown improved generalization to unseen environments within

benchmark datasets, their adaptability to evolving or continuous environments re-

mains an open challenge.

Overall, the current trajectory of research in VLN highlights both the poten-

tial of deep learning-based methods and the pressing need for approaches that

can address real-world complexities. This gap forms the foundation for the re-

search presented in this study, which seeks to enhance navigation accuracy and

adaptability by leveraging object-level information and constructing datasets that

incorporate dynamic and long-term environmental changes.

1.1.2 Challenges in VLN

To bridge VLN technology into our real life, the transition from static to dy-

namic and evolving environments introduces several key challenges in Vision-

and-Language Navigation (VLN), which must be addressed to enable robust per-

formance in real-world scenarios:

• Limited Understanding of Fine-Grained Visual Details Existing VLMs

often overlook critical details in their environment, such as small but impor-

tant objects or subtle changes in object states. This lack of detailed under-

standing affects their ability to make precise decisions, such as determin-

ing accurate turning or stopping points during navigation. Moreover, many

4



current approaches rely on scene-level feature representations, which can

obscure important object-level details.

• Scarcity of Datasets for Modeling Long-Term Changes Most exist-

ing VLN datasets assume a static world where roads, buildings, and land-

marks remain unchanged. However, real-world environments are subject to

both short-term variations (e.g., moving vehicles, pedestrians, and dynamic

traffic signals) and long-term transformations (e.g., urban development and

seasonal shifts). While short-term changes affect real-time decision-making,

long-term environmental changes challenge an agent’s ability to recognize

familiar locations over extended periods. Current VLN models lack the

capability to recognize temporal consistency across different time frames,

leading to failures when navigating in long-term dynamic environments.

• Over-Reliance on Static Environment Settings Beyond long-term en-

vironmental changes, real-world navigation also involves short-term dy-

namic factors such as moving vehicles, pedestrians, and changing traffic

signals. Current VLN models are often designed for environments with

predefined, unchanging routes, limiting their applicability in real-world sce-

narios where navigation decisions must be made dynamically. Real-world

navigation requires agents to adapt in real-time to factors such as moving

vehicles, pedestrian activity, or sudden environmental changes, posing sig-

nificant challenges for existing methods that lack robust adaptability.

Addressing these challenges is essential for advancing VLN beyond controlled

settings and enabling its deployment in real-world applications such as autonomous

driving, urban navigation, and disaster response. This study seeks to tackle these

issues through improved object-aware recognition, datasets capturing both dy-

namic and long-term environmental changes, and methods enabling real-time adapt-

ability to evolving conditions. To develop truly robust VLN systems, agents

must not only make real-time decisions in response to short-term environmental

changes but also retain memory of previously visited locations despite long-term

transformations. A robust VLN model should be capable of revisiting a route

after months or years and recognizing familiar landmarks, even when structural
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modifications have occurred. Addressing both short-term dynamics and long-term

adaptability is crucial for transitioning VLN from controlled experiments to prac-

tical deployment in real-world settings.

1.2 Bridging the Gap: Objectives of This Study

This study aims to bridge the gap between current VLN methods and the demands

of real-world, dynamic scenarios by addressing two key challenges: enhancing

object-aware recognition and improving adaptability to dynamic environments.

• Improving Fine-Grained Visual Understanding for Navigation This

study proposes a novel VLN method that leverages object-level information

to enhance navigation accuracy. By incorporating features of landmark ob-

jects along the route, the method significantly improves the agent’s ability to

determine precise turning and stopping locations, leading to more accurate

navigation decisions. Unlike existing approaches, this object-aware method

directly addresses the need for finer-grained environmental understanding

during navigation and segmentation.

• Dataset for Long-Term Adaptability to Environmental Changes
To account for the evolving nature of real-world scenarios, this study in-

troduces a new dataset capturing long-term environmental changes, such as

street transformations and infrastructure development. This dataset allows

VLN agents to recognize locations even after months or years, despite mod-

ifications in the surrounding environment. By incorporating continuous and

evolving scenarios, it overcomes the limitations of existing static datasets

and offers a robust foundation for studying temporal consistency and long-

term scene understanding in navigation.

• Dataset and Method for Adapting to Dynamic, Short-Term Changes
in VLN This study defines a novel VLN task designed to incorporate real-

time dynamic factors, including traffic flows, pedestrian movements, and

weather variations. In response to these challenges, new methods are de-

veloped to enable agents to adapt to real-time changes effectively. These
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methods emphasize real-time decision-making and robust integration of vi-

sual and linguistic cues, ensuring safe and efficient navigation in dynamic

environments.

1.3 Publication List

The publication list by the author and the related thesis chapters are as follows:

1. Yanjun Sun, Yue Qiu, Yoshimitsu Aoki, and Hirokatsu Kataoka. Outdoor

vision-and-language navigation needs object-level alignment. Sensors, Vol. 23,

No. 13, 2023 (Chapter 2)

2. Yanjun Sun, Yue Qiu, Yoshimitsu Aoki, and Hirokatsu Kataoka. Guided

by the way: The role of on-the-route objects and scene text in enhancing

outdoor navigation. In IEEE International Conference on Robotics and
Automation (ICRA), pp. 5198–5204, 2024 (Chapter 2)

3. Yanjun Sun, Yue Qiu, Mariia Khan, Fumiya Matsuzawa, and Kenji Iwata.

The stvchrono dataset: Towards continuous change recognition in time. In

Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 14111–14120, June 2024 (Chapter 3)

4. Yanjun Sun, Yue Qiu, and Yoshimitsu Aoki. Dynamicvln: Incorporating

dynamics into vision-and-language navigation scenarios. Sensors, Vol. 25,

No. 2, 2025 (Chapter 4)

1.4 Structure of This Thesis

Here is the structure of this thesis:

• Chapter 1 provides an overview of the background and positioning of VLN

and change recognition. It highlights the challenges of existing methods

in handling complex real-world environments and identifies the objectives

and problems this research aims to address, focusing on overcoming the
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limitations of static VLN models and their lack of adaptability to dynamic

and long-term changes.

• Chapter 2 proposes a VLN model that leverages landmark objects for out-

door navigation tasks. By utilizing object information in the environment,

the model aims to improve the accuracy of navigation, addressing issues

such as incorrect decisions at turning and stopping points in existing meth-

ods. The effectiveness of the proposed model is validated through evalua-

tions of established benchmark datasets [11, 12].

• Chapter 3 focuses on the construction of a novel dataset to recognize long-

term changes in outdoor environments. This dataset records continuous

and long-term evolution in the environment and aims to overcome the lim-

itations of conventional static datasets. Additionally, this dataset supports

multiple tasks, such as change region segmentation and description [13].

• Chapter 4 extends existing VLN tasks by defining a new navigation task that

considers dynamic factors like traffic and weather. Methods are proposed

to address these dynamic factors, enhancing the agent’s ability to adapt to

real-time changes in the environment. The effectiveness of the proposed

methods is demonstrated through experiments conducted in dynamic sce-

narios [14].

• Chapter 5 summarizes the outcomes of this study and discusses the impact

of the proposed methods and datasets on real-world navigation and change

recognition tasks. Future challenges and research directions are also out-

lined.
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Chapter 2

Object-Aware Vision-and-Langauge
Navigation

This chapter addresses the challenge of improving navigation accuracy in Vision-

and-Language Navigation (VLN), particularly in complex environments, as dis-

cussed in Chapter 1. An overview of the VLN task is provided, followed by a

review of existing works in this field, highlighting their limitations, particularly

the lack of focus on object-level information. This oversight often results in navi-

gation failures, such as incorrect turns or stops, especially in complex outdoor en-

vironments. To overcome these limitations, the Object-Attention VLN (OAVLN)

model is introduced, which enhances navigation accuracy by incorporating ob-

ject features from the environment. By aligning object-level cues with natural

language instructions, OAVLN enables agents to make more precise decisions

during navigation. Extensive experiments demonstrate that OAVLN significantly

outperforms existing methods in both seen and unseen scenarios.

2.1 Introduction

Enabling robots to navigate real-world environments using natural language in-

structions is a long-standing goal in AI research. Vision-and-Language Naviga-

tion (VLN) tasks aim to achieve this by requiring an agent to interpret linguis-

tic commands, align them with visual perceptions of the environment, and reason
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about spatial relations to execute actions that guide it to a destination [2, 7, 15, 16].

This process involves understanding instructions, grounding them in observable

environments, tracking the agent’s position relative to objects, and dynamically

adjusting actions to ensure successful navigation.

Recent advancements in outdoor VLN models have predominantly relied on

encoder-decoder frameworks that combine instruction and panoramic visual fea-

tures to predict navigation actions [2, 3, 4, 8, 17]. However, these approaches often

fail to fully leverage object-level information from the environment. A closer ex-

amination of generated paths reveals that such models tend to neglect key objects

or landmarks referenced in the instructions, which are crucial for human-like nav-

igation. This oversight frequently leads to navigation errors, such as turning or

stopping at incorrect locations, thereby hindering their applicability in real-world

scenarios.

The challenges posed by this lack of object awareness are well documented.

Studies like DiagnoseVLN [18] reveal that agents often prioritize directional cues

while neglecting objects explicitly mentioned in instructions. This is contrary

to how humans navigate. In unfamiliar settings, humans intuitively rely on land-

marks―buildings, objects, or text―as reference points for accurate navigation [19].

For example, as illustrated in Fig. 2.1, a human navigator might turn at a “black

iron fence”and stop at the “last blue bike,”using these objects as crucial envi-

ronmental cues.

The success of object-aware models in indoor VLN tasks [20, 21, 22, 23, 24,

25, 26] underscores the importance of integrating object features for navigation.

Indoor VLN scenarios typically involve stable and structured environments, mak-

ing it feasible to leverage specific objects for navigation. However, outdoor en-

vironments are inherently more complex and unstructured, requiring models to

process diverse visual cues, including natural and man-made landmarks. This

complexity underscores the need for robust object-aware VLN models capable of

operating effectively in dynamic, real-world conditions.

To address the abovementioned limitations, This chapter proposes a simple yet

effective Object-Attention VLN (OAVLN) model that allows the agent to focus

more on objects and scene texts to understand the environment better. To eval-

uate the effectiveness of OAVLN, extensive experiments were conducted on two
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Instruction: Go with traffic to the nearest intersection. Keep straight at the intersection. Turn right 
at the next intersection. Black iron fence will be on your right. Look right for the line of blue bikes 
before the end of the next intersection. Stop just before the last blue bike.

Start

Goal

(a)

(b)

(c)

(b)

(c)

Black iron fence

Blue bikes

(a)

Intersection

Figure 2.1 Objects are important clues in outdoor VLN. Our Object-Attention VLN

model is designed to navigate using this information. At viewpoint (b), our

agent seeks the ‘black iron fence’ and turns right. Subsequently, it stops at

the viewpoint (c) because it has observed the ‘blue bikes.’

widely used outdoor VLN benchmark datasets, Touchdown [2] and map2seq [27].

Comparisons with four baseline models [2, 3, 4, 8] demonstrate that OAVLN con-

sistently outperforms existing approaches across all key metrics, even in unseen

scenarios. Qualitative analyses further confirm that the improved performance

stems from OAVLN ’s enhanced ability to identify and utilize objects, enabling

precise turns and stops in complex environments.
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2.2 Related Work

2.2.1 Vision-and-Language Navigation

Vision-and-Language Navigation (VLN) unites visual perception and natural lan-

guage understanding, requiring agents to interpret linguistic instructions and align

them with their surroundings to navigate effectively. Early work in VLN primarily

focused on indoor navigation scenarios, exemplified by the R2R benchmark [7],

which introduced navigation tasks within the Matterport3D dataset [28] using a

multimodal Seq2Seq baseline model. Extensions of R2R introduced multilingual

benchmarks like XL-R2R [29] and RxR [15], highlighting the growing demand

for linguistic diversity in VLN.

In contrast, outdoor VLN introduces unique challenges due to unstructured

and dynamic environments. The Touchdown dataset[2] was the first outdoor VLN

benchmark, based on Google Street View1, featuring complex navigation tasks in

real-world urban environments. Subsequent outdoor datasets like StreetLearn [30],

Retouchdown [31], StreetNav [32], map2seq [27], and Talk2Nav [33] further ex-

panded the scope of outdoor VLN tasks.

A variety of methods have been developed for these benchmarks:

• RCONCAT [2], the baseline model for Touchdown, uses an LSTM-based

architecture to encode trajectories and instructions.

• ARC+l2s [17] cascades action prediction into binary stopping decisions and

subsequent direction classification.

• VLN-Transformer[8] enriches navigation data by applying a pre-trained

BERT[34] model to external multimodal datasets.

• GA [3] computes fused representations of instructions and images using

gated attention mechanisms.

• ORAR [4] enhances navigation performance by introducing junction-type

embeddings and heading deltas, which reduce the performance gap between

seen and unseen environments.
1https://developers.google.com/maps/documentation/streetview/intro
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However, these methods rely heavily on LSTM-based encoder-decoder archi-

tectures, which often fail to effectively utilize landmarks and objects specified in

instructions, leading to navigation errors in complex outdoor environments. This

chapter addresses these limitations by introducing an approach that explicitly in-

tegrates object-awareness into the navigation process, enhancing adaptability in

unstructured and dynamic settings. While prior research has made significant ad-

vances in aligning language and vision for structured environments, the proposed

method focuses on capturing object-level features that are critical for outdoor nav-

igation.

2.2.2 Object-Aware VLN

To address the need for fine-grained semantic understanding, particularly with re-

spect to object-level information, vision-and-language pre-trained models such as

ViLBERT [35] have been adopted in VLN. These models leverage joint represen-

tations of visual and linguistic features, enhancing the alignment of instructions

with environmental cues.

Several object-aware VLN models have demonstrated the utility of integrating

object features:

• ORIST [36] incorporates object and room features to improve navigation

performance.

• OAAM [20] extracts tokens from instructions and encodes object tokens to

inform action predictions.

• SOAT [22] combines scene classification networks and object detectors to

align distinct visual cues for more effective navigation.

While object-aware models have proven effective in indoor VLN tasks, their

applicability to outdoor environments remains limited due to the dynamic and

diverse nature of outdoor settings. Indoor navigation typically occurs in static,

well-defined environments, whereas outdoor navigation requires agents to handle

a wider range of objects, varying spatial layouts, and unstable conditions such as

changing weather or lighting.
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Outdoor VLN also introduces unique challenges, including recognizing scene-

specific features like store names or embedded objects, which are critical for navi-

gation. Addressing these challenges necessitates leveraging scene text recognition

and object detection to enhance the agent’s understanding of its surroundings. To

tackle these complexities, this study extends object-awareness to outdoor navi-

gation by incorporating object features and scene-specific cues such as text and

dynamic objects. The proposed Object-Attention VLN (OAVLN) model bridges

the gap between object

2.3 Problem Definition for Vision-and-Language Nav-
igation

The Vision-and-Language Navigation (VLN) task involves guiding an agent to

navigate within an environment using natural language instructions X = {x1, x2, . . . , xl}.

The environment is represented as an undirected graph G = (V,E), where v ∈ V
denotes nodes and (v, u) ∈ E represents labeled edges connecting panoramas.

Each node v is associated with a panoramic RGB image, and each edge connects

neighboring panoramas at a specified heading angle α(v,u). The agent’s state at

time t is defined as st = (vt, α(vt−1,vt)), where vt represents the current location

of agent, and α(vt−1,vt) is the heading from the previous node. Given instructions

X , the agent performs actions at ∈ {FORWARD, LEFT, RIGHT, STOP} and

transitions to the next state st+1. The task is completed when the agent produces

a sequence of state-action pairs ending with an = STOP, successfully reaching

the target destination.

2.4 Preliminary Experiments: What do agents fo-
cus on when navigating?

DiagnoseVLN [18] reports that task completion nearly drops to zero when the

masking direction word tokens are during testing only and that masking out the

object tokens has a weaker impact on task completion rate than the masking di-
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Target

Predicted trajectory’s nodes
Ground-truth trajectory

Instruction: 
Go with traffic, the playground will be on your right. turn left at the first intersection. 
Turn left again at the next intersection. Green scaffolding will be on your right. 
Turn left at the next intersection. A fruit market will be on the corner. Look left and 
stop just pass all the backpacks at the store with a yellow banner.
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Figure 2.2 Example of visualization of the ORAR model on the Touchdown dataset.

The top of this figure is the instruction, and the red text is the distribution of

stop location, which ORAR disregarded. Left: trajectory generated by

ORAR vs. ground truth. Right: Attention to each token from the

instructions during predicting actions.

rection tokens. The authors concluded that direction tokens were more important

than object tokens for VLN tasks and suggested that future work explore the use

of direction tokens in greater depth. While it may seem counterintuitive, the im-

portance of different types of tokens may vary depending on the specific task and

environment being navigated. Object tokens are sometimes more efficient in pin-

pointing landmarks and deciding turns.

Therefore, to determine which tokens the trained agent paid attention to during

outdoor navigation, the generated trajectory was visualized using the Google Map

API2. A heatmap of instruction attention weights was plotted for the ORAR [4]

model. Fig. 2.2 shows an example of the visualization. The x-axis of the heatmap

2https://developers.google.com/maps/documentation
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represents each token of the instructions, while the y-axis represents the predicted

actions of the agent at each timestep. Each grid on this heatmap indicates attention

received by a token when the agent predicted the action. The more attention a to-

ken receives, the brighter color of the grid. This example shows that the agent was

instructed to stop at ‘the store with a yellow banner’, but ignored this information

and turned left at the next junction, eventually stopping at the wrong location to

fail navigation. The heatmap shows that the attention weight for ‘the store with

a yellow banner’ was almost zero during navigation. Furthermore, the attention

weight of object tokens in the instructions from the test set was analyzed, revealing

an average weight of 0.128 for each object token in the instructions. According to

the preliminary results reported above, existing outdoor VLN models cannot pay

attention to object tokens during navigation, leading to turning or stopping at the

wrong location. Additionally, even some non-content words, like ‘the’, have more

attention than object tokens, indicating that the existing model has been learning

data biases by ignoring objects.

The findings from our preliminary experiments highlight a critical gap in ex-

isting outdoor VLN models: insufficient attention to object tokens, which are

essential for accurate navigation in real-world environments. This motivates the

development of our Object-Attention VLN (OAVLN) model, designed to priori-

tize object features and align them with navigation instructions for improved per-

formance in both seen and unseen scenarios. The following sections detail the

proposed methodology and its evaluation.

2.5 Proposed Method: Object-Attention Vision-and-
Language Navigation (OAVLN)

This section presents the Object-Attention Vision-and-Language Navigation (OAVLN)

model, developed to improve navigation accuracy in outdoor Vision-and-Language

Navigation (VLN) tasks. The model incorporates object features, scene text, and

panorama representations to address the limitations of existing approaches. As

shown in Fig. 2.3, the architecture follows a sequence-to-sequence framework

with a two-layer decoder that predicts the agent’s actions based on multiple input
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Feed-forward Network

Instruction Encoder Panorama EncoderObject Encoder

Scene
Text Encoder

Scene Text Filter

1st LSTM layer

  Prev. Action   Object Features   Pano Features

Instruction

Paranoma

Head through the first two
lights, passing Dominique….

Mutli-head Attention Layer

2nd LSTM layer

Time Step

Figure 2.3 Overview of the Object Attention VLN model. The model takes multiple

input modalities, including navigation instructions, panoramic features,

object features, and scene text. Using these inputs, the model generates

contextualized representations of the agent’s state at each timestep,

considering prior actions, to make informed navigation decisions.

modalities. The Instruction Encoder processes the natural language instructions,

converting them into contextualized token embeddings. The Panorama Encoder

extracts features from panoramic images, while the Object Encoder focuses on

object-level features detected within the scene. Additionally, a Scene Text En-

coder filters and encodes textual elements (e.g., store names or signs) from the

environment. These modalities are combined via a Multi-Head Attention Layer,

which generates context-aware representations of the agent’s state. The two-layer

decoder, consisting of LSTM layers, predicts the agent ’s next action at each

timestep by considering the encoded features and the agent’s previous action.
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2.5.1 Instruction Encoder.

The instruction encoder embeds and encodes the tokens in the navigation instruc-

tions sequence x = x1, ..., xL using a bidirectional LSTM [37]:

x̂i = embedding(xi) (2.1)

((w1, ..., wL), z
w
L )) = Bi-LSTM(x̂1, ..., x̂L) (2.2)

where w1, ..., wL are the hidden representations for each token and zwL is the last

LSTM cell state.

2.5.2 Panorama Encoder & Object Encoder

At each timestep t, the panorama at the agent’s current position is represented by

extracted visual features. The 360°panorama is divided into eight projected rect-

angles, each covering a 60◦ field of view, ensuring a complete representation of the

environment. Among these eight slices, five are selected for further processing:

the center slice, which aligns with the agent’s heading, and the two slices to its left

and right. This selection focuses on the most relevant portions of the panorama

for navigation. The selected five slices are fed into a pre-trained ResNet-50 [38]

model on ImageNet [39] to extract high-level visual features. Each slice is repre-

sented by a feature vector p̄st of size 2,048. To capture object-level information,

up to 20 objects are detected within each slice. The features of these objects

are extracted using a pre-trained ResNet-101 [38] model on the Visual Genome

dataset3. The object features from each slice are aggregated into a vector ōst , also

with a size of 2,048. By combining panoramic features p̄st and object features ōst ,

the model gains a holistic understanding of the agent’s surroundings, leveraging

both high-level scene context and fine-grained object-level details.

2.5.3 Scene Text Filter & Scene Text Encoder.

To improve scene text extraction from low-quality panorama images, a Scene

Text Filter was developed. The Object Encoder was utilized to process the entire

3http://visualgenome.org/
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panorama and identify the ‘sign’ regions. Scene text recognition was then ap-

plied exclusively to these ‘sign’ regions using the MMOCR [40] model with the

SAR [41] architecture for text recognition. Finally, the recognition results were

refined by matching them to the closest scene text mentioned in the instructions.

These scene text e = e1, ..., eM were embedded and encoded by a bidirec-

tional LSTM:

êi = embedding(ei) (2.3)

((w1, ..., wM ), zwM )) = Bi-LSTM(ê1, ..., êL) (2.4)

where w1, ..., wM are the hidden representations for each token and zwM is the last

LSTM cell state.

2.5.4 Decoder

The panorama encoder, as described in detail above generates a fixed size repre-

sentation p̄t of the sequence of sliced visual representations of the current panorama

view, denoted as p̄1t , ..., p̄
S
t . Similarly, the object encoder emits a fixed size repre-

sentation ōt of the objects in the current panorama and a sequence of sliced view

representations ō1t , ..., ō
S
t . The state zfirst0 of the cell in the first decoder LSTM

layer was initialized using zwL . The input to the first decoder layer was the con-

catenation (⊕) of previous action embedding āt−1, visual representation p̄t and

object features ōt. The output of the first decoder layer,

hfirstt = LSTMfirst([āt−1 ⊕ p̄t ⊕ ōt]), (2.5)

was then used as the query of multi-head attention [42] over the text encoder. The

resulting contextualized text representation cwt was then used to attend over the

sliced visual representations cpt , object representations cot , and scene text encode

cet .

The input and output of the second decoder layer were

hsecondt = LSTMsecond([t̄⊕ hfirstt ⊕ cpt ⊕ cot ⊕ cet ]), (2.6)

where t̄ represents embedded timestep t. The hidden representation hsecondt from

the second decoder layer goes through a feed-forward network to predict action

at.
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2.6 Experiments

2.6.1 Experimental Setup

Implementation Details. Our framework and baselines were developed in

PyTorch [43]. ResNet50 [38] was used for panorama features, while Faster R-

CNN [44], pretrained on Visual Genome [45] with ResNet101 [38], was used

for object features with an IoU score of 0.6. Scene text was recognized us-

ing MMOCR [40]. The object tokens in instructions were summarized with

stanza [46], which also optimized scene text recognition by a sequence match-

ing algorithm [47] with 0.8 similarity score. The models were trained using

Adam [48] under teacher-forcing, with parameters such as a learning rate of 5e-4,

weight decay of 1e-3, batch size of 64, and dropout rates of 0.3. After 150 epochs,

the top model was selected from the development set. Instructions and scene texts

were converted to byte pair encodings [49] with a 2,000 token vocabulary and

embedded at 256. Other embeddings were 256 and 16 in size.

Datasets. The Touchdown [2] and map2seq [27] dataset use urban scenarios to

create a large navigation environment based on Google Street View4. The envi-

ronment simulates NYC, comprising 29,641 nodes and 61,319 undirected edges.

The touchdown dataset includes 9,326 navigation trajectories, each paired with

human-written instructions based on the corresponding panoramas, within 6,525

training, 1,391 development, and 1,409 test samples. The instructions in map2seq

instead focused on visual landmarks from OpenStreetMap. map2seq comprises

7,672 navigation instructions, segmented into 6,072 training, 800 development,

and 800 test samples. Furthermore, following the approach in ORAR [4], the

datasets were split based on the geographic separation of the training and testing

areas for the unseen scenario.

Baselines. The proposed model was compared to previous studies on outdoor

VLN, including RCONCAT [2], GA [3], VLN-Transformer [8], and ORAR [4].

These models use an LSTM to encode the instruction text and a single-layer de-

coder LSTM to predict the next action.These models were selected because they

do not specifically handle on-the-route object features in detail. By comparing the

4https://developers.google.com/maps/documentation/streetview/overview
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results with these baseline models, it was demonstrated that incorporating on-the-

route object features benefits outdoor VLN.

Metrics. The following metrics were used to evaluate the VLN performance:

• Task Completion (TC): This metric measures the navigation accuracy of the

agent to the correct location, which can be either the exact goal panorama

or one of its neighboring panoramas.

• Shortest-Path Distance (SPD) [2]: This metric calculates the average dis-

tance between the final position of the agent and the goal position in the

environment graph.

• Success weighted by Edit Distance (SED): This metric calculates the nor-

malized Levenshtein edit distance [50] between the predicted and ground-

truth paths, only awarding points for successful paths.

• Coverage weighted by Length Score (CLS) [51]: This metric measures the

similarity between the path of the agent and the ground-truth path.

• Normalized Dynamic Time Warping (nDTW) [52]: This metric measures

the cumulative distance between the predicted and ground-truth paths.

• Success-weighted Dynamic Time Warping (SDTW): This metric is the nDTW

value calculated only for successful navigations.

2.6.2 Quantitative Results

This section evaluates the performance of the proposed Object-Attention Vision-

and-Language Navigation (OAVLN) model in outdoor VLN tasks. The analysis

focuses on both seen and unseen scenarios, validating the effectiveness of ob-

ject features and scene text integration. Comparative results are presented against

baseline models, highlighting improvements across various evaluation metrics.

Seen Scenario. Tables 2.1 and 2.2 present a comparison of the OAVLN model

and baseline approaches on seen scenarios for the Touchdown and map2seq datasets.

The proposed model consistently outperformed baselines across all evaluation

21



metrics. Notably, OAVLN demonstrated significant improvements in path align-

ment metrics, such as CLS and sDTW, underscoring the advantage of leverag-

ing object feature attention to enhance instruction-following capabilities and goal

achievement rates.

On the map2seq dataset, the OAVLN(+scene text) variant achieved a 6% im-

provement in goal-oriented metrics (TC and SED) compared to baseline models,

indicating its superior ability to utilize objects for precise stopping. In contrast,

improvements on the Touchdown dataset were less pronounced, likely due to dif-

ferences in dataset characteristics, as map2seq instructions emphasize object fea-

tures more explicitly.
Table 2.1 Navigation results on Touchdown for the seen scenario.

Model TC↑ SPD↓ SED↑ CLS↑ nDTW↑ sDTW↑

RCONCAT [2] 8.94 22.48 8.55 43.23 18.20 7.98

GA [3] 9.87 20.34 9.42 47.77 21.51 8.92

VLN Transformer [8] 14.90 21.20 14.60 45.40 25.30 14.00

ORAR [4] 24.23 17.30 23.70 56.87 37.20 22.87

Ours (+scene text) 24.77 15.98 24.14 59.93 37.64 23.14

Ours (+objects) 25.90 16.04 25.40 60.84 39.00 24.47

Table 2.2 Navigation results on map2seq for the seen scenario.

Model TC↑ SPD↓ SED↑ CLS↑ nDTW↑ sDTW↑

RCONCAT [2] 14.62 20.61 14.30 54.18 27.43 13.76

GA [3] 17.88 18.25 17.55 58.56 31.46 17.08

VLN Transformer [8] 17.00 - - - 29.50 -

ORAR [4] 43.96 6.93 43.09 82.97 60.43 41.78

Ours (+scene text) 50.00 6.11 49.04 84.77 65.39 47.45
Ours (+objects) 49.00 6.40 48.08 84.28 63.38 46.75

Unseen Scenario. Table 2.3 reports the performance of the OAVLN model in

unseen scenarios for the development and test sets of both datasets. While the

relative performance improvement compared to baseline models decreased in un-

seen environments, OAVLN still achieved a 3% increase in TC and nDTW metrics
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over existing approaches.

These findings highlight the robustness of OAVLN in unseen scenarios, where

it demonstrates the ability to follow instructions and achieve tasks with higher

accuracy and reliability. The incorporation of detailed on-the-route object features

enables the agent to effectively identify turn and stop locations, even in previously

unencountered environments.
Table 2.3 Navigation results for the unseen scenario.

Dataset Touchdown map2seq

dev test dev test

Model TC↑ nDTW↑ TC↑ nDTW↑ TC↑ nDTW↑ TC↑ nDTW↑

RCONCAT [2] 2.3 3.9 1.9 3.5 2.0 3.7 2.1 3.8

GA [3] 1.8 3.6 2.2 4.0 1.8 3.9 1.7 4.1

VLN Transformer [8] 2.3 4.7 3.1 5.2 3.6 6.2 3.5 6.1

ORAR [4] 8.50 11.13 8.76 11.74 23.88 34.34 22.12 32.69

Ours (+scene text) 9.25 12.83 8.12 11.73 26.25 35.63 25.25 35.49

Ours (+object) 10.25 13.86 8.63 12.12 25.87 35.27 25.37 36.56

2.6.3 Qualitative Results

This section presents visualizations and analyses of qualitative examples to eval-

uate the performance of the Object-Attention VLN (OAVLN) model. The results

illustrate improvements in navigating real-world environments compared to the

baseline model (ORAR), highlighting OAVLN’s enhanced ability to utilize object

features and scene text effectively.

Visualization of Trajectories. Figures 2.4 and 2.5 depict trajectories generated

by the baseline and OAVLN models in outdoor VLN tasks. The red underlined

text in the instructions corresponds to locations where the baseline model failed to

make correct navigation decisions. Orange text represents object tokens. By lever-

aging object features, scene text, and language instructions, OAVLN demonstrates

an improved ability to comprehend the environment and make reliable navigation

decisions.

In Figure 2.4, the baseline model fails to execute correct turns due to ignor-
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ing landmark references, while OAVLN accurately interprets the instructions and

completes the turn successfully. Similarly, Figure 2.5 shows cases where the base-

line stops prematurely, missing critical details in the instructions. In contrast,

OAVLN effectively aligns object tokens with navigation decisions, ensuring cor-

rect stopping points.

Analysis of Failure Cases. Figures 2.6, 2.7, and 2.8 present examples of failed

navigation scenarios for the OAVLN model. These cases provide insights into the

limitations and challenges in complex environments.

• Stopping Near the Goal. As shown in Figure 2.6, some failures oc-

curred when the model stopped one step away from the goal, accounting for

approximately 33% of the failure cases. Despite the failure, these results

indicate that OAVLN often navigates very close to the intended destination.

• Complex Road Conditions. Figure 2.7 illustrates an instance where the

agent chose an incorrect path in an environment with parallel roads. Such

failures highlight the challenges of navigating in visually ambiguous condi-

tions.

• Confusing Instructions. Figure 2.8 shows failures resulting from un-

clear or overly complex instructions, which confuse the agent and lead to

navigation errors.

Stop and Turn Accuracy.
Table 2.4 Accuracy of Models at Stop and Turn Locations.

Touchdown map2seq

Stop Turn Stop Turn

Seen

ORAR 72.70% 60.48% 50.89% 6.10%

Ours 73.51% 62.94% 59.90% 12.00%
Unseen

ORAR 92.26% 26.97% 71.15% 6.34%

Ours 93.17% 28.90% 80.08% 12.25%
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Baseline Ours

Instruction: Go to the light and turn right. Proceed straight through one more light until reaching the following 
light passing a Chipotle and Potbelly's on the right. Leather Impact is on the far right corner. Turn left here and 
proceed straight and stop in front of Sil Thread Inc and Jonathan Embroidery, before the next light.

Start 
Predicted trajectory’s nodes

Ground-truth trajectory
Target

Ground truth trajectory’s nodes

Baseline Ours

Instruction: Head to the second light and make a left. At the next intersection with NYU on the right make a 
right. Head past the first intersection and at the T make a left. Stop just past the Dunkin' Donuts on your left 
after you turn.

(a) A case where the baseline model turns at the wrong place.

(b) A case where the baseline model turns at the wrong place.

Figure 2.4 Examples of incorrect turns by the baseline model. Left: trajectory

generated by ORAR. Right: trajectory generated by the OAVLN model.
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Baseline Ours

Instruction: Head to the first light and make a right. You will pass through two more lights and at the third light 
you will make a left. There will be a Starbucks on your left once you turn. Head down the street and stop in front 
of Scarlatto Restaurant. You have gone too far if you hit Hotel Edison.

Baseline Ours

Instruction: Proceed to the traffic light and should see a library on the corner. Turn right and proceed straight 
through two more lights. At the third there is a Deccan Spice and Curry in a Hurry on the corners. Turn left here 
and proceed halfway down the block and stop near Copper Chimney on the left and a large parking area on the 
right.

(a) A case where the baseline model stops at the wrong place.

(b) A case where the baseline model stops at the wrong place.

Figure 2.5 Examples of incorrect stops by the baseline model. Left: trajectory

generated by ORAR. Right: trajectory generated by the OAVLN model.

Table 2.4 presents the stop and turn prediction accuracy of OAVLN compared

to the baseline model. Incorrect stops are defined as cases where the agent stops
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Instruction: Orient yourself with the red storefront on your right, go forward and make a right at the second 
intersection, with the blue store sign wrapping around the building on your right. Follow the traffic and make a right at 
the first intersection, with the green awning now on your left. Go straight and stop just before you pass the last red pole 
on the building to your left.

Figure 2.6 Failure case where the OAVLN model stops one step away from the goal.
Instruction: Turn so that the store with the red awning is on your right, and the green construction is on your left. Follow 
that road to the first intersection, pass through to the next intersection which is just after a short green fenced area. Turn right 
and follow that road a short ways passing the first available left turn. Stop when you are beside the first tree in the area 
between the roads on your left.

Figure 2.7 Failure case due to complex road conditions. Red arrow: correct path. Blue

arrow: chosen path.
Instruction: Turn so the wooden doors are on the left side and you are going the same way as the cars. Go all the way 
into the intersection before you make a right turn. If you have short white poles on the right side then you turned too soon.
After you make the right turn there will be concrete barriers on the left side of you. Go one block then make another right 
turn. You should have green sign on the left side and a purple sign on the right side. Go a little way down this one way 
street. When you are almost to a metal overhang on the right that is on a parking area come to a stop.

Figure 2.8 Failure case caused by confusing instructions.
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within five steps of the goal but at an incorrect location. OAVLN demonstrates

a significantly lower failure rate for both stop and turn predictions, highlighting

its ability to align navigation actions with object tokens and instructions more

effectively.

Token Masking Experiments. To further validate the model’s focus on object

tokens, token masking experiments were conducted. Object tokens were masked

during testing, and the task completion rate was analyzed. As shown in Figure 2.9,

OAVLN’s task completion rate decreased significantly under masking conditions,

indicating its reliance on object tokens for navigation. This contrasts with baseline

models, which show less dependence on object features.

Attention heatmaps in Figure 2.10 further illustrate the difference. While

ORAR focuses on the initial parts of instructions, OAVLN prioritizes object to-

kens and their temporal relevance, enhancing its decision-making capabilities.

0.0 0.2 0.4 0.6 0.8 1.0
Mask Rate (%)

0.0

0.1
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) OAVLN(+scene text) (Ours)
OAVLN(+object) (Ours)
ORAR

Figure 2.9 Changes in task completion rates when masking object tokens in

instructions on the Touchdown dataset (seen scenarios).

2.6.4 Analysis

Our OAVLN works well in a seen scenario and an unseen environment, proving

that the on-the-route object feature is helpful for outdoor VLN. The results shown
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(b) Heatmap of OAVLN

(a) Heatmap of ORAR

Figure 2.10 Attention heatmap comparison between ORAR and OAVLN. Red text on

the x-axis represents object tokens.

below indicated that the ‘object feature’ and ‘scene text’ are necessary. It can help

the agent focus on on-the-route objects, enabling the agent’s localization. Specif-
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ically, OAVLN assists the agent in turning and stopping more accurately, which

is a more intuitive approach. Therefore, even in unknown locations, OAVLN can

use surrounding objects as references to reach the goal. Moreover, our work high-

lights the importance of leveraging contextual information, such as scene text, in

navigation tasks. Our approach could serve as a starting point for future research

in this area and inspire the development of more advanced models that can better

use the contextual information available in real-world environments.

2.7 Conclusion

This chapter addressed the limitations of current outdoor Vision-and-Language

Navigation (VLN) models, particularly their inability to effectively leverage ob-

ject tokens, which often leads to navigation failures. The proposed Object-Attention

VLN (OAVLN) model was introduced to incorporate on-the-route object informa-

tion, significantly improving outdoor VLN performance. Extensive experiments

on two large-scale datasets demonstrated that the OAVLN model consistently out-

performed existing methods in both seen and unseen scenarios. Furthermore,

qualitative visualizations revealed how the model effectively learns to prioritize

object features, resulting in a more nuanced understanding of the environment

and enhanced navigation accuracy.

Limitations. While the OAVLN model achieves notable improvements, it is not

without limitations. First, the model is susceptible to data biases in both the scene

text encoder and the object encoder, which can impact its ability to generalize ef-

fectively to novel scenarios. Second, the computational requirements for training

and deploying the model are significant, potentially limiting its practical applica-

tions in resource-constrained settings. Addressing these challenges will require

further research into efficient encoding techniques and strategies to mitigate data

biases.

Future Directions. Future research could focus on reducing the computational

cost and training time of the model, making it more accessible for practical appli-

cations. Additionally, integrating advanced techniques to enhance generalization

across diverse environments, such as domain adaptation or robust feature extrac-
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tion, could further improve the performance of the model. Exploring alternative

datasets that capture a wider variety of environmental dynamics and leveraging

more efficient model architectures may also provide promising directions for over-

coming the current limitations.
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Chapter 3

The STVchrono Dataset:
Continuous Change Recognition in
Time

In this chapter, the focus is on addressing the lack of datasets for recognizing

long-term environmental changes, a key challenge discussed in Chapter 1. Under-

standing continuous changes in real-world scenarios is essential for applications

such as urban planning, environmental science, agriculture, and cultural heritage

preservation. Existing datasets primarily emphasize discrete changes between two

images, such as object addition or removal, often relying on synthetic or con-

strained real-world data. These limitations hinder progress in recognizing gradual

and continuous changes that unfold over extended time periods.

To bridge this gap, this chapter introduces the STVchrono dataset, a novel

benchmark specifically designed for long-term continuous change recognition.

The dataset comprises 71,900 photographs spanning 18 years across 50 cities

worldwide, offering diverse geographic and temporal coverage. It supports three

primary tasks: continual change captioning for image pairs and sequences, and

change-aware sequential instance segmentation. These tasks aim to evaluate mod-

els’ ability to describe and recognize changes over time in real-world scenes.

Extensive experiments are conducted to assess the effectiveness of existing

methods, including multimodal Large Language Models (LLMs) and state-of-the-
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art segmentation models, using the STVchrono dataset. The findings highlight

the limitations of current approaches in handling real-world continuous changes,

underscoring the importance of this new benchmark in advancing research in this

domain.

3.1 Introduction

The environment around us evolves continuously due to natural processes, human

activities, and technological advancements. Recognizing these changes is pivotal

for applications in various fields, such as urban planning, environmental science,

agriculture, and cultural heritage preservation. Continuous change recognition

can reveal insights into historical patterns, assist in analyzing ongoing trends, and

inform future decision-making.

Real-world changes may include different spatial and temporal changes in the

natural landscape (e.g. water volume in the river), urban infrastructure (e.g. road

width), weather conditions (e.g. season change), or population dynamics (e.g.

type of human activities). What matters the most is the continuous and dynamic

nature of all these change types. Recognition of continuous changes can provide

valuable insights into past historical events, support current trend analysis, and

facilitate future planning.

Currently available tasks related to scene change understanding focus on change

detection and change description. While the target of change detection is to find

changed regions within a scene, change description deals with the generation of

language captions for the detected changes. The existing change datasets [53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 63] mostly focus on recognizing discrete changes

between paired images or 3D point clouds, overlooking the importance of con-

tinuous, gradual changes, occurring over long time periods. Additionally, these

datasets either include synthetic data [59, 60, 61, 62] (artificially generated im-

ages from simulated environments) or concentrate on simplified real-world scenes

(like tabletop rearrangement in [53]). Thus, these datasets are not suitable for un-

derstanding the real-world continuous changes.

To address the above-mentioned limitations, this chapter proposes a novel
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benchmark STVchrono (STreet View chrono) dataset. STVchrono is designed

to facilitate the understanding of long-term continuous changes in the real world.

To capture continuous outdoor changes, the Mapillary 1 platform was utilized for

data collection. Specifically, 71,900 photographs of 50 different cities over a span

of 18 years (2006 to 2023) were collected. The chosen 50 cities vary in loca-

tion (spread across various continents) and encompass different landscape types

(urban and rural areas).

The STVchrono dataset is suitable to facilitate three change understanding

tasks (Figure 3.1): continual change captioning for image pairs and image se-

quences, and change-aware sequential instance segmentation (for change recog-

nition). The aim of continual change captioning for an image pair is to describe the

content of the change between a pair of images, taken in the same location but at

two different times. These changes may include variations in color, age, volume,

or condition for 10 object types (Table 3.2). Another type of continual change

captioning task deals with the longer image sequences (3-6 images) taken over a

span of several years. This task involves evaluating the degree of the change, its

progression over time, and visible trends (Table 3.2). The primary objective of the

change-aware sequential instance segmentation task is to identify and track object

instances within a set of 5 images, taken over different time intervals in the same

location.

Extensive experiments using STVchrono evaluate state-of-the-art methods for

change detection and captioning, including multimodal Large Language Models

(LLMs). While LLMs demonstrate superior performance in describing changes

compared to traditional methods, they still fall short of human-level accuracy.

Similarly, segmentation methods tested on the change-aware sequential instance

segmentation task reveal considerable room for improvement. These results un-

derscore the complexity of continuous change recognition and highlight the need

for further advancements in this area.

By providing a robust benchmark for evaluating models on real-world contin-

uous change recognition, the STVchrono dataset aims to bridge the gap between

current methods and the demands of real-world applications, driving progress in

1https://www.mapillary.com/app/
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this critical area of research.

3.2 Related Works

3.2.1 Change Understanding Datasets

Currently, available change understanding datasets primarily concentrate on two

main tasks: the detection of changed regions within a scene and the linguistic

description of the change content. The KTH Meta-rooms [64] and tvtable [53]

datasets facilitate change detection in the robotics field between pairs of 3D point

clouds of indoor rooms and tabletop surfaces, correspondingly. The Change3D [55],

Panoramic Change Detection [56], and SOCD [57] datasets are suitable for the

street-view scene recognition. While [55] consists of 3D point cloud pairs, [56]

and [57] works in 2D and use semantic masks and bounding boxes for change de-

tection, correspondingly. Another set of four datasets was recently proposed for

2D change detection: COCO-Inpainted, Synthtext-Change, Kubric-Change, and

VIRAT-STD [58]. The 3DCD [54], EGY-BCD [65], and ChangeNet [66] datasets,

aim for change detection in satellite remote sensing.

The CLEVR-Change [59] and CLEVR-Multi-Change [60] datasets focus on

captioning single and multiple changes in synthetic image pairs, whereas the

TRANCE [61] and OVT [62] datasets represent changes and their temporal orders

using triples and graphs. Real-world datasets include Spot-the-Diff [63] (surveil-

lance) and LEVIR-CC [67] (aerial imagery). Research also covers change detec-

tion in multi-view images [68] and 3D point clouds [69, 70]. Additionally, [71]

introduced a Visual Room Rearrangement task, where agents rearrange a room to

its original layout by interacting with changed objects.

Existing datasets for change understanding often focus solely on detecting or

describing discrete changes in static image pairs. In contrast, our STVchrono

dataset captures continuous, gradual changes over time using sequences of 2-6

images and is created from historical photographs of 50 different cities around the

world (Table 3.1).
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Table 3.1 Comparision of the STVchrono against existing change detection (top ten

rows) and change description (four middle rows) datasets.

Dataset Environment
#

change pair
#

city
Time
span

Sequence
length

Real
image

Discrete
change

Continuous
change

Human-labeled
caption

Change
detection

Meta-rooms [64] indoor 588 - days 2 3 3 7 7 3

Change3D [55] outdoor 866 1 4 years 2 3 3 3 7 3

SOCD [57] outdoor 15,000 - - 2 7 3 7 7 3

COCO-Inpainted [58] in- & out-door 60,000 - - 2 3 3 7 7 3

Synthtext-Change [58] outdoor 5,000 - - 2 7 3 7 7 3

Kubric-Change [58] outdoor 1,605 - - 2 3 3 7 7 3

VIRAT-STD [58] in- & out-door 1,000 - hours 2 3 3 7 7 3

3DCD [54] satellite 472 1 7 years 2 3 3 3 7 3

EGY-BCD [65] satellite 6,091 1 8 years 2 3 3 3 7 3

ChangeNet [66] satellite 31,000 100 9 years 6 3 3 3 7 3

CLEVR-Change [59] table 79,606 - - 2 7 3 7 7 7

CLEVR-Multi-Change [60] table 60,000 - - 2 7 3 7 7 3

Spot-the-Diff [63] outdoor 13,192 1 hours 2 3 3 7 3 7

LEVIR-CC [67] satellite 10,077 1 15 years 2 3 3 3 3 7

STVchrono (our) outdoor 19,400 50 18 years 2-6 3 3 3 3 3

3.2.2 Change Understanding Methods

State-of-the-art change captioning methods, such as DDLA [63], DUDA [59],

MCCFormers [60], M-VAM [72] and CLIP4IDC [73] compute differences either

at the pixel- [63] or feature-level [59] or use transformers [60, 72, 73] to correlate

image pairs. Models like VARD-Trans [74] and SCORER [75] focus on identi-

fying consistent features in images with viewpoint shifts. In the field of change

detection task, two recent studies [58] target identification of change regions with

viewpoint differences. [58] introduces a co-attention-based approach for identi-

fying correspondences between image pairs, while [58] relies on depth map gen-

eration for image correlations. Despite numerous existing methods, most of them

focus on 2D image pairs or 3D data pairs and overlook serial-image change recog-

nition. Recent studies highlight the potential of LLMs in context reasoning, but

their application in change recognition remains unexplored. Our data delves into

change recognition in serial images, encompassing captioning, change region de-

tection, and the usage of LLMs in this realm.

3.2.3 Image Sequence Recognition Datasets

Alongside change understanding, various datasets support image pair or image

sequence recognition tasks: NLVR [76] and NLVR2 [77] for difference reason-
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ing, and GeneCIS [78] and VisualDNA [79] for image similarity. Similar to

STVchrono, Mapillary [80] and [81] datasets utilize image sequences taken over

different time periods for place recognition and robust aerial place representa-

tion, correspondingly. SatlasPretrain [82] is a temporal and spatial remote sensing

dataset for remote sensing image analysis. In contrast, STVchrono focuses on

identifying and describing regions of long-term continuous change.

3.2.4 Instance Segmentation Methods

Instance segmentation aims to identify and outline distinct objects in visual con-

tent through pixel masks. The Mask R-CNN [? ] method improved upon Faster R-

CNN [83] by adding mask prediction. Subsequent methods like MaskFormer [84]

incorporated transformer technology to enhance accuracy. Recent studies, such as

Mask2Former [85], Mask DINO [86], and UNINEXT [87] have merged instance,

semantic, and panoptic segmentation into unified models for simultaneous seg-

mentation across various levels. Mask2Former has been adapted to 3D masked

attention for video instance segmentation [85], while Ying et al. [88] propose the

CTVIS method by adding a memory bank to maintain consistency across frames.

Alternatives like Seq2Former [89] and DVIS [90] have developed trackers to pre-

serve temporal continuity in image-level segmentation results. Our work intro-

duces a change-aware instance segmentation for image sequences, tracking the

evolution of natural scenes over years, thus extending beyond the typical short-

term focus of existing video segmentation methods.

3.3 The STVchrono Dataset

The STVchrono dataset uniquely localizes and describes details of ongoing, ex-

tensive changes across space and time, going beyond the discrete changes (such as

add, delete, or move) identified by current datasets (Table 3.1). It addresses both

easily labeled discrete changes and complex continuous gradual shifts, which are

hard to quantify with labels. Encompassing shifts in weather patterns, seasonal

transitions, vehicular movement, and city architecture, the STVchrono dataset

captures the dynamics of the real-world environments (Figures 3.1 and 3.2, This
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(a) Seasonal changes (b) Vegetation growth (c) Building exterior changes

(d) Building construction stages (d) Road and building maintenance and development

(a) Seasonal changes (b) Vegetation growth (c) Building exterior changes

(d) Building construction stages (d) Road and building maintenance and development

(a) Seasonal changes (b) Vegetation growth (c) Building exterior changes

(d) Building construction stages (d) Road and building maintenance and development

(a) Seasonal changes (b) Vegetation growth (c) Building exterior changes

(d) Building construction stages (d) Road and building maintenance and development(a) Seasonal changes (b) Vegetation growth (c) Building exterior changes

(d) Building construction stages (d) Road and building maintenance and development

(e) Road and building maintenance and development

Figure 3.2 Different change types contained in the STVchrono dataset.
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dataset encompasses a wide range of changes, including natural changes (e.g. (a)

and (b)), as well as changes related to infrastructure and construction (e.g. (c),

(d), and (e)).), supporting three distinct tasks related to these changes:

• Continual Change Captioning (Image Pair) aims at the recognition of

the change details between 2 images taken at 2 distinct time periods (Fig-

ure 3.1, left). Examples of such changes can include the appearance of new

cars, the removal of road signs, or a change in a building color.

• Continual Change Captioning (Image Sequence) focuses on the change

tendencies over a sequence of 3-6 images taken at different time periods

(Figure 3.1, middle). It offers insights into patterns, progressions, and trends

over an extended time period, like the growth of plants.

• Change-Aware Sequential Instance Segmentation is suitable for the

detection, understanding, and tracking of the change regions (Figure 3.5),

ensuring a comprehensive analysis of the change dynamics for the specific

object instances over a long time period.

3.3.1 Image Collection

The STVchrono dataset was collected using the Mapillary API. Mapillary was

chosen for its repository of images from diverse global locations captured over

many years, enabling an in-depth analysis of temporal historical changes. Specif-

ically, images were selected for 50 different cities, spanning 18 years: from 2006

to 2023 (Figure 3.1). OpenStreetMap 2 was employed to determine the bound-

aries of each city and then randomly sampled 300 to 1,000 latitude and longitude

coordinates within these city limits. In the preliminary phase of the dataset cre-

ation, all available images for these coordinates (each with a resolution of 640x640

pixels) were retrieved. Subsequently, images containing projection-related distor-

tions that hindered annotators from recognizing changes, as well as coordinates

yielding fewer than two images, were excluded. The resulting dataset comprises

71,900 photographs. Depending on the specific caption or detection task, relevant

images were handpicked and manually annotated from the preliminary collection.
2https://nominatim.openstreetmap.org/search
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Table 3.2 Annotation guidelines for the continual change captioning.

Subject Attributes Dataset example

Weather Conditions, brightness,

color

Image A is sunny, while im-

age B is cloudy. (IP, dis-
tinction)

Tree Growth pattern, color, vol-

ume, presence/absence

The tree on the right side

becomes progressively

thicker. (IS, tendency)
Building Construction stages, age,

cleanliness, heights, exte-

rior alterations

Image 1 has the newest

building on the left side.

(IS, superlative)
Road Age, cleanliness, width and

volume, number and pres-

ence/absence of roads, cars,

and traffic signs

In Images 1 and 2, a road is

visible on the left; in Images

3 and 4, it disappears. (IS,
similarity)

Lawn / Grassland Color variations, volume,

growth rates, transitions,

presence/absence

The lawn on the right side

looks greener in image B

than in image A. (IP, dis-
tinction)

Soil / Land Color variations, vol-

ume, transitions, pres-

ence/absence

The land on the right side

of the sidewalk turned into

a lawn from images 2 to 5.

(IS, tendency)
River Color variations, vol-

ume, transitions, pres-

ence/absence

The river is the cleanest in

image 3. (IS, superlative)

Road fence Age, color, cleanliness,

height, presence/absence

The fence gate is not visible

in image 1 but is present in

images 2 and 3. (IS, simi-
larity)

Human Number, type and nature of

activities, presence/absence

In image A, someone walks

on the road; in image B,

someone sits on a bench.

(IP, distinction)
Animal Number, type and nature of

activities, presence/absence

There is a cat on the road in

Image 3, but it is absent in

the other images. (IS, simi-
larity)
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3.3.2 Continual Change Captioning (Image Pair)

The goal of this task is to describe in detail the visual differences between two

street view images taken at 2 different time periods. For this purpose, 15,000

image pairs (a total of 30,000 images) were selected from the STVchrono set of

71,900 images. Crowdsourcing platforms were employed to gather human anno-

tations in English. Each image pair received three to eight descriptive sentences

detailing the dominant changes from one human annotator, while another annota-

tor verified the effectiveness of these descriptions. An image pair annotation was

approved only after the validation received from the second annotator.

Considering the possibility of numerous changes between two images, the fo-

cus was placed on 10 dominant subjects commonly found in street view images,

such as “weather” and “tree”, to be featured in the change captions. For each

subject, the annotations specifically addressed the distinction in various aspects,

including color, age, volume, or condition. The comprehensive annotation guide-

lines are presented in Table 3.2. The image pair task involves comparing two

images, labeled A and B, to identify attribute distinctions. The image sequence

task requires analyzing a series of 3-6 images to detail tendencies, superlatives,

and similarities. The series start with the earliest image, designated as Image A

and number 1 (IP: image pair; IS: image sequence). Additionally, annotators were

instructed to report dominant changes that go beyond the guidelines, allowing for

a more open-ended approach to change recognition. Figure 3.3 shows an example

of continual change captioning (image pair).

3.3.3 Continual Change Captioning (Image Sequence)

The objective of the continual change captioning (image sequence) task is to nar-

rate the progression of changes observed in a series of 3-6 images, captured at

the same location over several years. From the 71,900 images in the STVchrono

dataset, 19,800 images were utilized, divided into 4,400 sequences. These im-

ages were grouped into four categories, each containing 1,100 sequences with 3,

4, 5, and 6 images, respectively. Human annotators were asked to focus on the

same 10 change aspects identified in the continual change captioning (image pair)
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Image A, 2015-11 Image B, 2016-07

Ground truth: A is cloudy, B is sunny and more bluish. The trees on the left side in B 
are more flourish than in A. B has more cars and humans than A. A woman is wearing 
white cloth on the left side of B but not in A.
MCCS: B is brighter than A. Trees in A has more leaves than B. There is a new 
building on the right side of B but not in A.
CLIP4IDC: A has more green than B. The sky in B is more bluish than A. Road B is 
newer than A. 
Openflamingo: Road B is older than A. B has more leaves than A. B has more grass 
than A.
BLIP2+GPT4: B has more trees and vehicles than A. B is sunnier than A. B also has a 
lawn, unlike A.

Image 1, 2016-01 Image 2, 2019-12 Image 3, 2021-06 Image 4, 2022-05

Ground truth: Image 1 has snow but others do not. Image 3 has the sunniest sky. There are people shown in Images 1, 2, and 4, but not in 3. 
The trees in Image 3 have more leaves. Images 3 and 4 have grassland on the right side. The road fence on the right side of Image 4 shows 
white because of the sunshine.

MCCS: There is a new building on the left side of Image 2 but not in other images. Image 1 has the gloomiest sky.
 

CLIP4IDC: The road is the newest in Image 2. Image 1 road is newer than Image 2. Image 2 road is newer than Image 1.
 

Openflamingo: The sky is the clearest in image 3. The road is the newest in image 2. The dirtiest road is in image 3.
 

BLIP2+GPT4: Image 3 is sunnier than Images 1 and 2. The road is in better condition in Image 3. The road fence in Image 4 is new and 
white. The weather in Image 4 is clearer and sunnier than others.

Ground truth:
• A is cloudy, B is sunny and more bluish.
• The trees on the left side in B are more flourish than in A.
• B has more cars and humans than A.
• A woman is wearing with cloth on the left side of B but not 

in A.

Figure 3.3 An example of continual change captioning (image pair) in STVchrono

task. Each image sequence received annotations, which were then validated by

two separate annotators. The annotations were directed to capture the tendency,
superlative, and similarity in color, age, volume, or condition across various

change aspects, as outlined in Table 3.2. Figure 3.4 shows an example of continual

change captioning (image sequence).

3.3.4 Change-Aware Sequential Instance Segmentation

The central goal of the consistent sequential instance segmentation task is to iden-

tify and track specific subject instances, within image sequences, captured at the

same location over different time intervals. 520 sequences were selected, repre-

senting a variety of cities and coordinates. Each sequence includes five images

taken at different times (yielding a total of 2,600 images). Human annotators

manually marked the instance regions and labels for each image. This task is

particularly crucial for monitoring long-term trends such as the increase or de-

crease in vegetation, changes in river width, and the construction or demolition of

buildings. A key challenge of this task is maintaining consistent instance labels

for the same subjects despite their transformations over time. Labels were pro-
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Image A, 2015-11 Image B, 2016-07

Ground truth: A is cloudy, B is sunny and more bluish. The trees on the left side in B 
are more flourish than in A. B has more cars and humans than A. A woman is wearing 
white cloth on the left side of B but not in A.
MCCS: B is brighter than A. Trees in A has more leaves than B. There is a new 
building on the right side of B but not in A.
CLIP4IDC: A has more green than B. The sky in B is more bluish than A. Road B is 
newer than A. 
Openflamingo: Road B is older than A. B has more leaves than A. B has more grass 
than A.
BLIP2+GPT4: B has more trees and vehicles than A. B is sunnier than A. B also has a 
lawn, unlike A.

Image 1, 2016-01 Image 2, 2019-12 Image 3, 2021-06 Image 4, 2022-05

Ground truth: Image 1 has snow but others do not. Image 3 has the sunniest sky. There are people shown in Images 1, 2, and 4, but not in 3. 
The trees in Image 3 have more leaves. Images 3 and 4 have grassland on the right side. The road fence on the right side of Image 4 shows 
white because of the sunshine.

MCCS: There is a new building on the left side of Image 2 but not in other images. Image 1 has the gloomiest sky.
 

CLIP4IDC: The road is the newest in Image 2. Image 1 road is newer than Image 2. Image 2 road is newer than Image 1.
 

Openflamingo: The sky is the clearest in image 3. The road is the newest in image 2. The dirtiest road is in image 3.
 

BLIP2+GPT4: Image 3 is sunnier than Images 1 and 2. The road is in better condition in Image 3. The road fence in Image 4 is new and 
white. The weather in Image 4 is clearer and sunnier than others.

Ground truth:
• Image 1 has snow but others do not.
• Image 3 has the sunniest sky. 
• There are people shown in Images 1, 2, and 4, but not in 3.
• The trees in Image 3 have more leaves.
• Images 3 and 4 have grassland on the right side.
• The road fence on the right side of Image 4 shows white because of the sunshine.

Figure 3.4 An example of continual change captioning (image Sequence) in

STVchrono

2017.04 --- 2021.04 2016.08 --- 2022.04

2017.04 --- 2021.04 2016.08 --- 2022.04

Figure 3.5 Two examples of image sequences (top) and their annotations (bottom) for

the change-aware sequential instance segmentation task. Objects with

consistent IDs share the same segmentation mask colors within each

sequence.
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vided for 12 subject categories, including vehicle (car bus), building, tree, road,

sky, lawn/grassland, soil/land, road fence, motorbike, bicycle, human, and animal.

Two examples illustrating the task are shown in Figure 3.5.

3.3.5 Dataset Statistics

To ensure a comprehensive representation of street view changes, 50 different

cities were selected from around the globe for our STVchrono dataset image col-

lection. The distribution encompasses 14 cities in Asia, 13 in Europe, 8 in North

America, 6 in South America, 6 in Oceania, and 4 in Africa. Istanbul was included

in both the Asian and European tallies because of its transcontinental position.

The dataset was split by cities into train and test sets, with ratios of 38/12 for im-

age pair and sequence captioning, and 22/8 for the segmentation task. For the two

change caption tasks, the dataset boasts a vast range of vocabulary due to the fully

human-annotated sentences. Specifically, the total vocabulary encompasses 1,223

unique words, with an average of 35.98 words per caption for the image pair task,

and 50.65 words per caption for the image sequence task.

A comparative analysis of the STVchrono dataset with existing datasets is

summarized in Table 3.1. The STVchrono dataset is the first of its kind to capture

ongoing changes on a global scale (50 cities) and to consider the trends within se-

quences of images (2-6 images). It facilitates not only the detection of changes but

also the recognition of change content through detailed human-labeled sentences.

Word Distribution I analyze the word distribution in the captions of two setups

for the continual change captioning tasks: image pair (Figure 3.6, left) and image

sequence (Figure 3.6, right) using WordCloud visualization 3. Both setups fea-

ture a wide variety of words. The image pair task requires identifying differences

between two images, leading to captions that include a greater number of compar-

ative words, such as “brighter”, “greener”, “cleaner”, and “different”. Conversely,

the image sequence task involves recognizing trends, superlatives, and similarities

across image sequences. As a result, the dataset contains a higher frequency of

relative terms like “newest”, “thickest”, “clearest”, and “gradually”.

Sentence Length Distribution The sentence length (change caption length per

3https://amueller.github.io/word cloud
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Figure 3.6 Wordcloud visualization of the continual change captioning (image pair)

task (left) and the continual change captioning (image sequence) task

(right) of the STVchrono dataset.

dataset instance) distribution for the two continual change captioning tasks is pre-

sented in Figure 3.7. Both dataset setups exhibit a long-tailed distribution. Specifi-

cally, the image pair task has an average sentence length of 35.98, while the image

sequence task, involving more images, has an average sentence length of 50.65.

Due to the minimum sentence number requirement set for sequences (three for

3-image and 4-image sequences, and five for 5-image and 6-image sequences),

there are two distinct peaks in the sentence length distribution for the continual

change captioning (image sequence). Additionally, both datasets feature a signif-

icant number of instances with longer sentences, offering a wide array of detailed

changes in the image pairs and sequences for model training and evaluation.

Time Deltas Distribution Figure 3.8 describes the distribution of time deltas

(spanned years of each dataset instance) for the three tasks of the STVchrono

dataset. All three tasks encompass instances with a wide range of time deltas.

3.4 Experiments

This section evaluates the proposed STVchrono dataset by benchmarking existing

state-of-the-art methods across its continual change captioning (image pair and
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Figure 3.7 Sentence length distribution of two continual change captioning tasks of the

STVchrono dataset.
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Figure 3.8 Distribution of the time deltas of the STVchrono dataset.

47



image sequence) and change-aware sequential instance segmentation tasks. Ex-

periments were designed to assess the performance of both traditional and multi-

modal LLM-based approaches while highlighting the effectiveness of the dataset

in facilitating continuous change recognition.

3.5 Experiments

This section evaluates the proposed STVchrono dataset by benchmarking existing

state-of-the-art methods across its continual change captioning (image pair and

image sequence) and change-aware sequential instance segmentation tasks. Ex-

periments were designed to assess the performance of both traditional and multi-

modal LLM-based approaches while highlighting the effectiveness of the dataset

in facilitating continuous change recognition.

3.5.1 Baseline Methods

Continual Change Captioning. I evaluated the performance of five state-of-

the-art change captioning methods: DUDA [59], MCCFormers-D, MCCFormers-

S [60], CLIP4IDC [73], and VARD-Trans [74], on both continual change cap-

tioning tasks (image pair and image sequence). To explore the potential of mul-

timodal Large Language Models (LLMs) in this domain, two recent LLM-based

methods were also included: OpenFlamingo [91] and BLIP2 [92] combined with

GPT4 [93].

Change-Aware Sequential Instance Segmentation. As no existing methods

specifically target change-aware sequential instance segmentation, two state-of-

the-art video instance segmentation models were adapted: Mask2Former [85] and

CTVIS [88]. These models were modified to track object instances, such as roads,

trees, or buildings, across sequential images instead of videos. Experiments were

conducted using various backbones, including ResNet50 [94], ResNet101 [94],

and Swin Transformer (SwinT-S, SwinT-L) [95], to evaluate their performance.
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3.5.2 Implementation Details

Out-of-the-box implementations of DUDA [59], MCCFormers-D, MCCFormers-

S [60], and CLIP4IDC [73] were used and VARD-Trans [74] for the continual

change captioning (image pair) task. For the continual change captioning (image

sequence) task, MCCFormers-S and CLIP4IDC were explored, as both methods

allow the sequential input. The initial learning rate was set as 10−4 and adopted

the Adam optimizer. All methods were trained for 80 epochs for captioning tasks

and 50 epochs for the segmentation task. For evaluation of OpenFlamingo [91]

and BLIP2 [92] + GPT4 [93], different prompts were designed as following.

3.5.3 Prompt Design

Specifically, detailed prompts were designed for use with OpenFlamingo and

BLIP2 + GPT4 in continual change captioning tasks.

OpenFlamingo. Custom prompts for OpenFlamingo were designed based on

its official image captioning templates. Figure 3.9 illustrates the prompt for image

pairs, while Figure 3.10 shows the design for image sequences. Experiments var-

ied the number of input examples (3, 5, 10, 15, and 20) and output formats, which

included:

• complete sentences (e.g., “B building is clearer than A. B grassland is
greener than A. Road B is newer than Road A. B is darker than A.”).

• itemized structures (e.g., ‘building’: [‘item’: ‘Old and new’, ‘answer’:
‘B building is clearer than A.’], ‘human’: [], ‘grassland’: [‘item’:
‘Color’, ‘answer’: ‘B grassland is greener than A.’], ‘road’: [‘item’:
‘Old and new’, ‘answer’: ‘Road B is newer than Road A.’], ‘road
fence’: [], ‘tree’: [], ‘weather’: [‘item’: ‘Light and darkness’, ‘an-
swer’: ‘B is darker than A.’]).

BLIP2 + GPT4. For BLIP2 and GPT4, in-context examples (Fig. 3.11) for

BLIP2 were combined with GPT4’s system messages. Since GPT4 cannot di-

rectly process images, BLIP2 was used to extract visual attributes such as color
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Example
<image>This is image A and taken at {prompt_imgA_year} .
<image> This is image B and taken at {prompt_imgB_year}. 
The changes of A and B are: {prompt_cap} <|endofchunk|>.
Query
<image> This is image A and taken at {query_imgA_year} .
<image> This is image B and taken at {query_imgB_year}. 
The changes of A and B are:

Prompt for OpenFlamingo

Figure 3.9 Prompt design for OpenFlamingo (image pair).

Example
<image> This is image 1 and taken at {prompt_img1_year} .
<image> This is image 2 and taken at {prompt_img2_year}. 
<image> This is image 3 and taken at {prompt_img3_year}.
...
The changes tendency of 1, 2, 3 … are: {prompt_cap} <|endofchunk|>.
Query
<image> This is image 1 and taken at {query_img1_year} .
<image> This is image 2 and taken at {query _img2_year}. 
<image> This is image 3 and taken at {query _img3_year}.
...
The changes tendency of 1, 2, 3 … are:

Prompt for OpenFlamingo

Figure 3.10 Prompt design for OpenFlamingo (image sequence).
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{"type": "weather", "prompt": "Describe the weather in the image, focusing on aspects like sunshine, cloudiness, and overall clarity."},
{"type": "tree", "prompt":” If there are trees in the image, describe their color, position in the image, and leaves' density. If no trees are present, output 'None'."},
{"type": "building", "prompt": "If there are buildings in the image, describe their color, structural features, size, and position in the image. If no buildings are present, output 'None'."},
{"type": "road", "prompt": "If there are roads in the image, describe their condition and appearance, including aspects like cleanliness and color. If no roads are present, output 'None'."},
{"type": "lawn", "prompt": "If there is grassland in the image, describe its color, texture, and position. If no grassland is present, output 'None'."},
{"type": "soil/land", "prompt": "If soil is visible in the image, describe its color, texture, and position. If no soil is visible, output 'None'."},
{"type": "river", "prompt": "If there is a river in the image, describe its color, size, and position. If no river is present, output 'None'."},
{"type": "road fence", "prompt": "If there is a road fence in the image, describe its color, condition, newness, and position. If no road fence is present, output 'None'."},
{"type": "human", "prompt": "If there are people in the image, describe their appearance, position, and activities. If no people are present, output 'None'."},
{"type": "animal", "prompt": "If there are animals in the image, describe their type, color, and position. If no animals are present, output 'None'."},
{"type": "vehicle", "prompt": "If there are vehicles in the image, describe their type, color, number, and position. If no vehicles are present, output 'None'."}

Prompt for BLIP2

Summarize only the most noticeable differences between serial images,  using the shortest possible sentences based on their attributes detailed in the JSON file descriptions. 
Focus on brevity and clarity. Describe differences in the attributes of 'building', 'weather', 'tree', 'road', 'lawn', 'car', 'human', 'animal', 'river', 'soil/land' and 'road fence', but only mention these items if there is 
a noticeable change. Use comparative sentences to illustrate the differences clearly,  
Please describe like this style: 'A is sunniest.'; B is cloudiest'; 'The trees in B are thickest'; 'The river is cleanest in 2’; 'There is a person in B but not in A.' Do not mention attributes that do not show 
significant differences.

Prompt for GPT4

Figure 3.11 Prompt design for BLIP2 + GPT4.

and age, storing the results in JSON files. These JSON files were subsequently

parsed by GPT4 to generate comprehensive change descriptions.

3.5.4 Evaluation Metrics

For evaluation of the generated change captions, standard captioning metrics were

employed, including BLEU4 [96] and CIDEr [97], to assess the similarity be-

tween generated and reference captions. Additionally, GPT4 [93] evaluation was

utilized to emphasize meaning similarity over sentence structures. The number

of sentences in the STVchrono dataset’s ground truth captions is limited to 3-8

reference captions per image sequence. As this number might not be enough to

describe all the changes within the image sequence, human ratings were further

implemented to manually assess the accuracy and coverage of the generated cap-

tions. Accuracy is calculated as the proportion of correct change descriptions rel-

ative to total changes, while coverage is the average number of correctly captured

changes per image sequence. Human ratings were provided for the randomly sam-

pled 100 sequences for each evaluated method. The standard Average Precision

(AP) metric was used for the evaluation of the generated instance segmentation

masks.

3.5.5 Results of Continual Change Captioning

Image Pair The comparison of the selected baseline models and multimodal

LLMs for this task is presented in Tab. 3.3 and Figure 3.12. Among all baselines
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(DUDA, MCCFormers -D and -S, CLIP4IDC, and VARD-Trans), CLIP4IDC

achieves the highest BLEU4, CIDEr, and GPT4 scores, with 28.5, 69.5, and 32.4

points respectively. This performance is attributed to the large dataset size on

which the model was pre-trained. OpenFlamingo and BLIP2+GPT4 show rela-

tively low BLEU4 and CIDEr scores, while obtaining higher scores on GPT4 and

human ratings. This is because these methods do not undergo a training process,

tending to predict sentences with structures that differ from the ground truth sen-

tences. In Figure 3.12, all methods capture only one to two changes. The highest

human rating results come from CLIP4IDC and OpenFlamingo, but their best ac-

curacy score of 47.8 and coverage score of 1.85 are extremely low, indicating that

the models struggle to recognize changes within the images from the STVchrono

dataset correctly.
Table 3.3 Change description evaluation on continual change captioning (image pair).

Methods BLEU4↑ CIDEr↑ GPT4↑ Accuracy↑ Coverage↑

DUDA [59] 21.7 39.1 26.3 32.7 1.1

MCCFormers-D [60] 22.4 52.7 29.8 39.8 1.34

MCCFormers-S [60] 25.4 51.3 26.8 35.9 1.28

CLIP4IDC [73] 28.5 69.5 32.4 47.8 1.74

VARD-Trans [74] 16.4 19.4 21.9 28.3 1.0

OpenFlamingo [91] 7.8 37.3 37.9 43.8 1.85
BLIP2 [92] + GPT4 [93] 4.2 16.1 33.1 37.5 1.52

Human 21.2 50.8 40.0 94.4 3.58

Image Sequence Experimental results for this task are in Table 3.4 (averaged for

all sequences from 3 to 6 images). As for the image pair continual change caption-

ing task, multimodal LLM-based methods exhibited lower scores in BLEU4 and

CIDEr but achieved better GPT4 scores and human ratings.IDEr, but achieved bet-

ter GPT4 score and human ratings. Specifically, BLIP2 + GPT4 scored the highest

in GPT4, while OpenFlamingo averaged nearly 1.10 changes detected with higher

accuracy (34.4 points). Figure 3.14 presents OpenFlamingo and BLIP2 + GPT4

correctly identifying changes. Compared to change recognition from image pairs,

all methods demonstrated reduced performance, when recognizing changes from

52



Figure 3.12 Experimental results of the existing methods in continual change

captioning (image pair). Changes correctly retrieved are highlighted in

blue.
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image sequences. Figure 3.13 depicts BLEU4 and GPT4 scores for varying se-

quence lengths. BLEU4 scores drop with the length increase, attributed to length-

ier ground truth captions and diminished model efficiency in grasping complex

structures. GPT4 scores stabilize, indicating a consistent complexity level in rec-

ognizing the change trends across 3 to 6 images. The performance gap compared

to human accuracy highlights a deficiency in identifying temporal transitions in

sequences, even for the advanced multimodal LLMs.
Table 3.4 Change description evaluation on continual change captioning (image

sequence).

Methods BLEU4↑ CIDEr↑ GPT4↑ Accuracy↑ Coverage↑

MCCFormers-S [60] 19.5 39.3 13.7 22.7 0.67

CLIP4IDC [73] 20.0 26.0 9.5 13.0 0.48

OpenFlamingo [91] 11.2 23.4 20.9 34.4 1.10
BLIP2 [92] + GPT4 [93] 4.9 7.5 30.3 21.3 1.02

Human 24.3 39.7 40.2 89.8 4.62

0

15

30

45

3 4 5 6

BLEU Scores

MCCS CLIP4IDC

3 4 5 6

GPT4 Scores

Openflamingo BLIP2+GPT4 Human

Length of image sequence Length of image sequence

Figure 3.13 Experimental results on dataset examples with different sequence lengths

(image numbers).

Prompt Design. Regarding the OpenFlamingo prompts, it was observed that

among the two output formats, complete sentences slightly outperformed the item-

ized output. Therefore, complete sentences were used as the output in the main
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(c)

(d)

Figure 3.14 Experimental results of the existing methods in continual change

captioning (image sequence).
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experiments. Moreover, initially, there was a concern that OpenFlamingo might

not handle multiple images effectively. This led to trials, in which images were

concatenated horizontally, before being input into OpenFlamingo. However, in-

putting images separately was found to yield more effective results, and this ap-

proach was adopted for all experiments. The results of experiments with varying

example numbers are shown in Table 3.5. In shorter sequences (like image pairs

or 3/4-image sequences) the model often replicated prompt language, leading to

minimal BLEU4 and CIDEr scores. Thus, 3-example experiments for these se-

quences were excluded. Additionally, experiments with larger example numbers

for longer sequences were omitted due to the limitations of the input token length.

Table 3.5 Change description evaluation on continual change captioning tasks using

OpenFlamingo.

Number of examples image pair 3-image sequence 4-image sequence 5-image sequence 6-image sequence
BLEU4/CIDEr BLEU4/CIDEr BLEU4/CIDEr BLEU4/CIDEr BLEU4/CIDEr

3 - - - 11.0/6.7 8.8/8.8
5 7.7/31.3 11.5/30.6 11.8/32.4 9.8/12.2 4.8/7.0

10 6.5/19.3 14.4/40.0 9.7/17.9 7.5/5.0 -

15 9.4/27.2 12.9/29.4 11.7/24.4 - -

20 7.8/37.3 11.5/30.6 - - -

Regarding BLIP2, experiments were conducted with two different BLIP2 base

models (BLIP2-opt-2.7b and BLIP2-flan-t5-xl), setting the number of BLIP2 to-

kens to 10, 15, 20, 25, and 30. Additionally, the GPT4 prompts were adjusted

based on the output from BLIP2 to generate grammatically similar sentences to

the ground truths. Through experiments with continual change caption tasks us-

ing image pairs and 3-image sequence data, the design of the prompts for BLIP2

and GPT4 was finalized. It was determined that a BLIP2 token count of 25 was

optimal. A comparative analysis of the opt- and flan-based models, detailed in Ta-

ble 3.6, revealed that the opt-based model generally outperformed the flan model.
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Figure 3.15 Examples of the change-aware sequential instance segmentation results

(from top to bottom: input images; ground truth; results from

Mask2Former and CTVIS). Objects with the consistent IDs share the

same mask colors within each sequence.
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Table 3.6 Change description evaluation on continual change captioning tasks using

BLIP2+GPT4.

Base model image pair 3-image sequence 4-image sequence 5-image sequence 6-image sequence
BLEU4/CIDEr BLEU4/CIDEr BLEU4/CIDEr BLEU4/CIDEr BLEU4/CIDEr

Blip2-opt-2.7b 4.2/16.1 5.1/12.4 5.0/4.3 5.2/6.3 4.1/6.8
Blip2-flan-t5-xl 3.9/8.6 4.9/7.6 5.2/4.6 4.1/3.8 3.1/2.8

Methods Backbone AP AP50 AP75

Mask2Former [85] ResNet50 [94] 4.60 6.73 4.52

ResNet101 [94] 4.64 6.29 4.70

SwinT-S [95] 6.02 8.34 6.47

SwinT-L [95] 6.46 9.52 6.32

CTVIS [88] ResNet50 5.86 7.82 6.37

SwinT-L 7.08 10.42 7.00

Table 3.7 Evaluation on the change-aware sequential instance segmentation task

(SwinT-S, -L: swintransformer small, large).

3.5.6 Results of Change-Aware Sequential Instance Segmenta-
tion

The comparison of the chosen baseline models for the change-aware sequential

instance segmentation task is present in Table 3.7. Among the two baselines,

the CTVIS method achieved the highest Average Precision (AP) score across all

thresholds (7.08 AP, 10.42 AP50, 7.00 AP75), when used with the SwinT-L back-

bone. Notably, even with the adoption of more extensive backbones like SwinT-L,

the scores were not significantly improved. Examples of the generated instance

segmentation masks for the chosen baseline models are present in Figure 3.15.

Both Mask2Former and CTVIS exhibited low accuracy in identifying buildings

with changing viewpoints, and in segmenting small regions like cars and hu-

mans. This is attributed to the unique challenges the STVchrono dataset poses,

which include significant appearance changes due to factors like: construction,

traffic, weather, seasons, and varying camera angles. These factors distinguish

STVchrono from the typical tasks such as video instance segmentation, highlight-

ing its complexity. The results underscore the need for ongoing innovation and

the development of new approaches to improve robustness in the change-aware
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sequential instance segmentation.

3.6 Conclusion

This chapter addresses the challenge of modeling long-term environmental changes

in real-world scenarios by introducing STVchrono, a novel benchmark dataset

for continuous change recognition. Continuous, long-term change is a pervasive

and essential characteristic of real-world observations, with critical applications

in domains such as urban analysis, agriculture, and cultural heritage preservation.

However, most existing research in change recognition focuses on short-term, dis-

crete changes and relies heavily on synthetic datasets constrained to two-image

observation pairs, limiting their applicability to dynamic and evolving environ-

ments.

To bridge this gap, STVchrono provides a comprehensive benchmark designed

to support research in long-term continuous change recognition. Comprising

street view images from 50 cities worldwide over an 18-year span, the dataset

facilitates evaluations across tasks such as paired image change captioning, se-

quential image change description, and change-aware instance segmentation. By

emphasizing gradual and long-term changes, STVchrono challenges models to

move beyond static or short-term scenarios and adapt to dynamic temporal tran-

sitions observed in real environments.Experiments conducted with STVchrono

revealed a substantial performance gap between current state-of-the-art methods,

including multimodal Large Language Models (LLMs), and human capabilities.

While advanced LLMs showed promise in understanding change trends, their abil-

ity to capture nuanced, dynamic changes remains limited, underscoring the need

for further methodological innovations.

Limitation. However, STVchrono has its limitations. These include uneven

city data distribution and a restricted diversity of changes, particularly those re-

lated to weather variations and time-of-day shifts. Addressing these gaps will

require expanding the dataset to include a broader range of visual changes and

more detailed linguistic descriptions. Furthermore, existing methods for change

recognition often treat change description and region detection as separate tasks.
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Developing integrated approaches that seamlessly combine change detection with

adaptive captioning remains an open challenge and a promising direction for fu-

ture research.

Future Directions. Future work can address these limitations in several ways.

First, expanding the dataset to include a broader range of changes, such as weather

variations and temporal lighting shifts, could improve the diversity and robustness

of change recognition models. Enhancing linguistic annotations to provide more

detailed and context-aware descriptions of changes would also support more com-

prehensive evaluations. Furthermore, developing integrated approaches that com-

bine change detection with adaptive captioning could enable seamless recognition

and description of changes in dynamic environments.

60



Chapter 4

Dynamic Vision-and-Language
Navigation

Real-world navigation is inherently dynamic, with agents needing to respond to

changing conditions such as moving vehicles, pedestrian activities, fluctuating

traffic signals, and varying weather. Traditional Vision-and-Language Navigation

(VLN) tasks, constrained by static environments, fail to capture these complex-

ities, making them inadequate for real-world applications where adaptability is

critical.

This chapter addresses the third and final challenge outlined in Chapter 1:

enabling agents to navigate dynamically evolving environments. To meet this

challenge, the Dynamic Vision-and-Language Navigation (DynamicVLN) task is

introduced, incorporating scenarios that require adaptive decision-making in the

face of dynamic elements. Additionally, a baseline model, DynaNav, is proposed

to establish benchmarks for this task. DynaNav features a Dynamic Detection

Module to recognize environmental changes and adapt its navigation strategy, en-

suring both instruction-following and situational awareness. This chapter explores

the limitations of static VLN, introduces the DynamicVLN task and dataset, and

evaluates the performance of the proposed baseline, laying the foundation for ro-

bust, adaptable navigation systems capable of real-world deployment.
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4.1 Introduction

The Vision-and-Language Navigation(VLN) [7] task requires the agent to be able

to navigate in environments based on visual inputs and natural language instruc-

tions. This capability is crucial for various real-world applications, including

household robots, caregiver assistance, navigation aids for visually impaired indi-

viduals, disaster area assessment, and delivery services. There is a strong societal

demand for advancements in this technology, as it has the potential to transform

everyday life and support critical operations. To support these applications, re-

searchers have proposed a variety of VLN datasets that capture diverse navigation

challenges, including the Room-to-Room (R2R) [7] for the indoor setting and

Touchdown [2] explores outdoor urban navigation, Specialized datasets such as

ALFRED [16] introduce tasks that combine navigation with object interaction,

further enriching the scope of VLN research.

However, these datasets were designed based on static environments, where

the objects and layout remain unchanged, failing to encapsulate the unpredictable

nature of the real world. The absence of dynamic elements such as moving cars,

pedestrians, fluctuating traffic lights, and variable weather conditions limits the

applicability of these datasets for preparing agents to navigate in environments

that closely mimic daily scenarios.

To address this, this chapter introduces the Dynamic Vision-and-Language

Navigation (DynamicVLN) task. DynamicVLN expands on traditional VLN by

incorporating the unpredictability of real-life scenarios, challenging systems to

adapt to changes in their surroundings while following navigation instructions.

DynamicVLN is structured around four key scenarios: vehicles, pedestrians, traf-

fic signals, and weather conditions. Each of these elements introduces variability

that requires agents to dynamically adjust their behavior, closely mirroring hu-

mans’ challenges in everyday navigation. In response to these elements, agents

may encounter numerous situations where they must decide whether to perform a

temporal stop or to continue action according to instructions. As shown in Fig-

ure 4.1, at timestep T , while the instruction indicates ‘turn right,’ the agent must

instead briefly stop to avoid a collision with an oncoming vehicle, exemplifying

the need for adaptive decision-making in dynamic environments. This scenario
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T-1

T
Instruction: Go straight and turn right at the first intersection …

Action List: 
• Traditional VLN: Forward, Forward, Right, Right, …
• Dynamic VLN:    Forward, Forward, Right, Temporal stop, Right, …

T-1

T

Target

Start

TimelineTT-1

Figure 4.1 In traditional VLN tasks, agents predict actions based only on instructions,

without accounting for real-time environmental changes. In Dynamic VLN

tasks, however, agents must consider both instructions and dynamic

elements, such as moving vehicles. For example, although the instruction

here directs the agent to ”turn right,” the agent must temporarily stop to

yield to an oncoming car, adapting its actions to avoid a potential accident.

highlights the challenges addressed by DynamicVLN, which requires agents to

respond to their surroundings while adhering to navigation instructions dynami-

cally.

Scenarios like this are among the 10 types of dynamic variations incorporated

into the DynamicVLN dataset, designed to evaluate agents’ adaptability across

diverse real-world challenges. For example, in vehicle-related scenarios, an agent

must navigate around sudden stops by cars or adjust its path in response to vehi-

cles merging into its lane. Pedestrian scenarios test the agent’s ability to safely

navigate around individuals crossing the street unexpectedly or moving in un-

predictable patterns. In scenarios involving traffic signals, agents are required to
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interpret changes in traffic lights, making split-second decisions that ensure com-

pliance with traffic laws while progressing toward their goal. Weather scenarios

introduce visual and physical challenges, such as reduced visibility due to fog or

altered road conditions caused by rain or snow, requiring agents to modify their

navigation strategies to maintain safety and efficiency. This chapter constructed

DynamicVLN using the CARLA simulator [98] and automatically generated in-

structions with GPT-4 [93], resulting in a dataset of 11,261 unique navigation in-

stances. Each of the 10 dynamic scenarios―vehicles, pedestrians, traffic signals,

and weather conditions- is divided between cases requiring a ‘temporal stop’ and

those that do not. This balanced design ensures comprehensive coverage of dy-

namic change detection, providing a robust foundation for training and evaluating

navigation systems in real-world-like environments.

Along with the DynamicVLN task, this chapter introduces DynaNav, a base-

line model designed to address its distinct challenges effectively. At the core of

DynaNav is a Dynamic Detection Module, which recognizes dynamic elements

within the environment. This module enables DynaNav to discern when to exe-

cute a ‘temporal stop’ or proceed, ensuring effective and adaptive navigation in

dynamic scenarios. In summary, the contribution of our work is four-fold:

• This chapter introduces Dynamic Vision-and-Language Navigation (Dy-

namicVLN), a novel task that incorporates dynamic real-world scenarios

such as moving vehicles, pedestrians, fluctuating traffic signals, and vary-

ing weather conditions, addressing the limitations of traditional static VLN

tasks.

• This chapter constructs the DynamicVLN dataset, comprising 11,261 nav-

igation instances across ten dynamic scenarios. Data collection was auto-

mated using the CARLA simulator, and captions were generated automati-

cally by GPT-4, ensuring both realism and diversity.

• This chapter proposes DynaNav, a baseline model equipped with a Dy-

namic Detection Module, enabling agents to recognize dynamic elements

and make context-aware decisions, such as when to execute a ’temporal

stop.’
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4.2 Related Works

4.2.1 Vision-and-Language Navigation Dataset

Vision-and-Language Navigation (VLN) tasks require agents to navigate environ-

ments using natural language instructions. Existing VLN datasets encompass a

variety of scenarios. For indoor navigation, the Room-to-Room (R2R) dataset [7],

based on Matterport3D [28], serves as a foundational benchmark. It has been ex-

tended by Room-Across-Room (RxR) [15] and XL-R2R [29], which include mul-

tilingual instructions. These datasets are designed for simple and structured navi-

gation tasks. For outdoor navigation, the Touchdown dataset [2], utilizing Google

Street View1, provides a benchmark for navigating complex urban environments.

Similarly, StreetLearn [30], Retouchdown [31], StreetNav [32], Talk2Nav [33],

map2seq [27] and VLN-VIDEO [99] focus on urban navigation tasks, with VLN-

VIDEO augmenting navigation performance using driving videos. In terms of

object interaction, the ALFRED dataset [16], built upon AI2-THOR 2.0 [100],

emphasizes complex tasks requiring agents to interact with objects while navi-

gating indoor environments. For aerial navigation, the AerialVLN dataset [101],

based on the AirSim [102], introduces challenges that require agents to interpret

instructions and navigate elevated perspectives. Some datasets focus on task-

specific navigation; for instance, CARLA-NAV [103] explores the grounding of

navigable regions corresponding to textual descriptions, while DOROTHIE [104]

highlights dialogue-based navigation in dynamic environments, Although these

datasets address dynamic elements in autonomous driving settings, they do not

encompass sudden situations and lack the dynamic elements found in real-world

scenarios. In contrast, our DynamicVLN dataset incorporates realistic, dynamic

changes along navigation routes, providing a comprehensive benchmark for eval-

uating agent adaptability in dynamic and fluctuating settings.

1https://developers.google.com/maps/documentation/streetview
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Table 4.1 Comparison of various Vision-and-Language Navigation datasets

highlighting environment type, data source, presence of dynamic elements,

use of automatic annotation, and primary task focus.

Dataset Environment Data Source
Dynamic
Elements

Automatic
Annotation

Emergent
Adaptation

Complex Navigation
Conditions

Room-to-Room [7] indoor Matterport3D 7 7 7 Structured, static

Room-Across-Room [15] indoor Matterport3D 7 7 7 Structured, static

VLN-CE [105] indoor Matterport3D 3 7 7 Continuous navigation

ALFRED [16] indoor AI2-THOR 2.0 3 7 7 Object interactions

Touchdown [2] outdoor Google Street View 7 7 7 Urban navigation

map2seq [27] outdoor Google Street View 7 3 7 Urban navigation

AerialVLN [101] outdoor AirSim 3 7 7 Aerial navigation

CARLA-NAV [103] outdoor CARLA 3 7 7 Grounded navigation

DOROTHIE [104] outdoor CARLA 3 7 7 Dialogue-based navigation

VLN-VIDEO [99] outdoor Google Street View 7 3 7 Urban navigation

DynamicVLN (our) outdoor CARLA 3 3 3 emergent adaptation

4.2.2 Approach for Vision-and-Language Navigation

With the introduction of numerous Vision-and-Language Navigation (VLN) bench-

marks, various methods exist to enhance navigation performance. Initially, many

approaches employed sequence-to-sequence (seq2seq) models, integrating images

and instructions into pre-trained models [6, 34, 94], which have great understand-

ing for images and instructions, then utilizing cross-modal attention mechanisms

for action prediction [7, 106]. Transformer-based models have further advanced

VLN performance. ORIST [36] introduced object-level and word-level inputs

to learn fine-grained relationships across textual and visual modalities, enabling

more precise decision-making. VLN-BERT [9] extended this approach by devel-

oping a recurrent vision-and-language BERT, which incorporates historical states

to enhance sequential decision-making in navigation tasks. SOTA [22] proposed a

scene- and object-aware transformer, emphasizing context-specific understanding

by focusing on relevant objects and environmental details. Given the challenges

of environmental understanding in VLN tasks, researchers have also incorporated

fine-grained attention mechanisms to improve agents’ comprehension of their sur-

roundings. For example, previous work [11, 12] leveraged landmarks along the

route to divide the navigation path into smaller segments, using these landmarks

as references to enhance navigation performance by providing clear intermediate

goals. Recently, LLM-based approaches have emerged as a promising direction
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in VLN. For instance, VELMA [107] employs large language models to gener-

ate natural language explanations, helping agents reason about their navigation

steps. VirtuWander [108] introduced a method for augmenting VLN tasks with

detailed descriptions generated by LLMs, improving interpretability and task suc-

cess. MapGPT [109] integrates GPT-based language generation to facilitate map-

based navigation, showcasing the potential of LLMs to handle complex, multi-

modal navigation tasks.

This chapter expands upon traditional VLN methods by introducing the Dy-

namic Vision-and-Language Navigation (DynamicVLN) task, which incorporates

dynamic, real-world elements into navigation scenarios. Unlike existing models,

DynamicVLN explicitly challenges agents to adapt to dynamic elements, such

as vehicles, pedestrians, traffic signals, and weather changes, requiring real-time

decision-making and enhanced contextual understanding. The proposed DynaNav

model further advances the field by introducing a Dynamic Detection Module, en-

abling agents to recognize dynamic elements and make context-aware decisions,

addressing gaps in current research.

4.2.3 Large Language Model for Dataset Generation.

Recent advancements in Large Language Models (LLMs) have significantly en-

hanced data annotation processes. Traditional methods often involve manual la-

beling, which is time-consuming and costly. Application for synthetic data gen-

eration has garnered significant attention due to their remarkable capability to

understand and generate human-like text based on input prompts and a few ex-

amples [110]. Early works utilized LLMs primarily for generating textual data,

particularly in the natural language processing (NLP) field, enabling tasks such as

text classification [111], summarization [112], and translation with minimal hu-

man intervention [113]. Building on this foundation, LLMs have also been applied

in multimodal contexts. For instance, LLaVA [114] demonstrated how language-

only models like GPT-4 could generate multimodal instruction-following data by

combining vision encoders with LLMs to create datasets for visual understanding

tasks. Moreover, LLMs have been leveraged to augment existing datasets to boost

task performance. AttrPrompt [115] utilized LLMs to enhance attribute-based rea-
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soning tasks, while other studies employed LLMs to expand datasets with diverse,

high-quality examples [116]. Beyond general-purpose datasets, there has been a

growing focus on using LLMs to generate domain-specific datasets [117, 118].

This chapter also leverages GPT-4 [93] to automatically generate diverse and con-

textually rich instructions for the DynamicVLN dataset. By integrating GPT-4

with the CARLA simulator [98], this study bridges the gap between synthetic

data generation and real-world scenarios. This approach not only automates the

dataset creation process but also ensures high-quality, diverse, and context-aware

navigation instructions, addressing the limitations of traditional manual annota-

tion and static datasets.

4.3 DynamicVLN Dataset

4.3.1 Task Definition

DynamicVLN is a task that challenges an agent to navigate through an environ-

ment based on natural language instructions X = {x1, x2, . . . , xl} while dynam-

ically adapting to changes within that environment to reach a specified target lo-

cation. The instructions consist of a sequence of l word tokens, each represented

by xi. The environment is structured as an undirected graph, with nodes v ∈ V
representing specific locations connected by labeled edges (v, u) ∈ E, where u

denotes an adjacent location to v. Each node is linked to an RGB image, pro-

viding visual context, and edges denote possible navigation paths with heading

angles α(v,u) between images.

At any given time t, the agent’s state is st ∈ S, st = (vt, α(vt−1,vt)), incorpo-

rating the current panoramic view vt and the heading angle α(vt−1,vt) from the pre-

vious state to the current one. To navigate, the agent performs actions from the set

at ∈ {FORWARD, LEFT, RIGHT, TEMPORAL STOP, STOP}, where the

temporal stop action is introduced to allow brief pauses in response to dynamic

events such as moving pedestrians or vehicles.

The objective in DynamicVLN is for the agent to generate a sequence of state-

action pairs ⟨(s1, a1) , (s2, a2) , . . . , (sn, an)⟩, culminating in a an = STOP action

that indicates the goal location has been reached, as defined by the instructions.
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Including the temporal stop action enhances the agent’s ability to navigate more

effectively by adapting to real-time changes in the environment, thus making Dy-

namicVLN a more realistic and challenging task that mirrors the complexities of

navigating dynamic, real-world scenarios.

4.3.2 Scenario Design

This section designes four dynamic element types to realistically simulate com-

plex navigation environments: vehicles, pedestrians, traffic signals, and weather.

The specific scenarios were introduced for each type that require the agent to

make adaptive decisions. For example, these scenarios often necessitate a tem-

poral stop to avoid potential accidents, such as yielding to cross-traffic or halting

for a pedestrian crossing. Including these dynamic elements adds complexity to

the navigation task, challenging the agent ’s ability to adapt and make real-time

decisions in unpredictable environments. Table 4.2 summarizes the scenarios in

DynamicVLN, including whether a temporal stop is required based on the pres-

ence of dynamic elements. Figure 4.2 shows examples in DynamicVLN when the

vehicle needs to temporarily stop at timestep T during driving for each type of

dynamic element.

4.3.3 Dataset Collection

Driving scenarios were designed using the open-source CARLA simulator [98]

to simulate realistic driving conditions and collect images and driving data of ve-

hicle navigation. Specifically, CARLA ’s pre-defined town maps (Town 1, 2,

3, 4, 5, 6, and 10HD) were utilized as the environment. To construct naviga-

tion routes, waypoints were first sampled at 5-meter intervals across the map,

defining a set of potential starting locations. Then, for each waypoint, a route

of 25-50 waypoints was generated using CARLA ’s GlobalRoutePlanner, which

allows for automatic pathfinding across the road network. This ensures the gener-

ated paths follow realistic road structures. Additionally, to introduce complexity,

each navigation route contained at least one turning intersection, mimicking the

design of traditional VLN datasets. A vehicle equipped with a front-facing cam-
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Table 4.2 In DynamicVLN, each dynamic element corresponds to specific scenarios.

The preferred action often involves a ’temporal stop’ or adjusting the

original navigation action to ensure safety and optimal performance.

Dynamic Element Scenario Required Action

Vehicle

Approaching ambulances or fire engines Temporal stop and yield

A car comes alongside Maintain distance or yield

Vehicles from different laneways Yield at intersections

The vehicle ahead stops suddenly Temporal stop

A vehicle changes lanes abruptly Adjust trajectory

Pedestrian

Pedestrians appear alongside Maintain caution or stop

Pedestrians appear in the crosswalk Temporal stop

Children running into the road Emergency stop

Traffic Condition

Changes in traffic signals Stop for red or proceed on green

Road signs (e.g., stop signs, yield) Follow traffic rules

Congested traffic ahead Adjust speed or stop

Weather

Poor visibility due to rain, snow, or fog Reduce speed and proceed cautiously

Strong winds affecting vehicle stability Adjust speed and maintain control

Slippery roads due to ice or rain Temporal stop or proceed with caution

era sensor was deployed to drive along each static route. The vehicle followed

the predefined paths, and the camera captured an image at every waypoint. At

each waypoint, navigation actions, including forward, right, left, temporal stop,

and stop, were determined based on changes in yaw angle and vehicle speed to

reflect real navigation decisions. Landmark information was extracted from the

CARLA map within a 3-meter radius of each waypoint, capturing relevant traf-

fic signs, signals, and road markers to provide additional scene context. While

static routes provide a structured baseline, real-world navigation requires adapt-

ability to unpredictable dynamic elements. To simulate this, dynamic routes were
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(a) Temporal stop due to oncoming car (b) Temporal stop due to pedestrian crossing 

(c) Temporal stop due to stop traffic sign (d) Temporal stop due to low visibility

Figure 4.2 Example of a temporal stop under each dynamic element types setting.

created by introducing moving vehicles, pedestrians, and environmental changes

along the predefined static routes. Using CARLA ’s Traffic Manager, dynamic

entities were added with randomized behaviors. Moving vehicles were generated

to simulate real-world road conditions, pedestrians were introduced near cross-

walks and sidewalks, requiring agents to detect and adapt to human movement,

and traffic signals were programmed to change dynamically, forcing agents to ad-

just to signal variations. Additionally, obstacle vehicles were strategically placed

to block the agent’s path at certain waypoints, requiring adaptive responses such

as temporal stops before proceeding.

The final dataset consists of images captured at every waypoint along both

static and dynamic routes, recorded navigation actions based on route yaw changes

and vehicle speed, landmark annotations extracted within 3 meters of each way-

point, and dynamic event labels indicating the presence of moving vehicles, pedes-

trians, or obstacles. By incorporating both static and dynamic navigation sce-

narios, this dataset serves as a comprehensive benchmark for evaluating agents’

real-world adaptability in VLN.
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4.3.4 Instruction Generation

Based on the data collected from CARLA, a pipeline was proposed to automat-

ically generate high-quality navigation instructions using GPT-4. In this work,

the aim was to train the agent to adapt to sudden events; therefore, the temporal

stop action was not included in the instructions. This pipeline employs two LLM

agents: an Instruction Generator and an Instruction Supervisor. As shown

in Figure 4.3, the pipeline begins by feeding the route overview, the sequence

of actions at each waypoint, and the landmarks encountered along the route into

the Instruction Generator. The generator produces an initial navigation in-

struction formatted similarly to traditional VLN instructions. Next, the generated

instruction and a simplified action list are passed to the Instruction Supervi-
sor. The supervisor evaluates the alignment between the simplified action list and

the generated instruction, checking for missing actions, incorrect sequencing, or

unnecessary additions. Based on its analysis, the supervisor refines the instruc-

tion to ensure accuracy and consistency with the action list. This iterative process

ensures that the final instruction is coherent, aligned with the route’s actions, and

accurately reflects the dynamic elements of the environment.

Specifically, Figure 4.4 and Figure 4.5 present the prompts used by the In-

struction Generator and the Instruction Supervisor during the instruction creation

process. The Instruction Generator receives structured input detailing the route

overview, actions, and landmarks, generating an initial instruction. The Instruc-

tion Supervisor takes the simplified action list and the initial instruction as input

and performs a consistency check, identifying necessary corrections before refin-

ing the final instruction.

4.3.5 Data Statistics

Following the pipeline introduced above, a total of 11,261 routes were collected.

Among these, 2,786 routes are associated with dynamic elements of vehicles,

1,680 with pedestrian activities, 3,370 with traffic conditions, and 601 with weather-

related scenarios. These represent various dynamic factors encountered during

navigation. However, the occurrence of a dynamic factor does not necessarily re-
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Overview
Image

Right, Right, Right, Right, Forward, 
Forward, Forward, Forward, 
Forward, Forward, Right, Right, 
Right, Right, Right, Forward, 
Forward, Forward, Forward, 
Forward, Forward, Forward, 
Forward, Forward, Forward, 
Forward, Right, Right, Right, Stop

Action 
list

Landmark 
list

4, {"id": 130, "type": "traffic.traffic_light"}
16, {"id": 185, "type": "controller.ai.walker"}

Target

Start

Instruction Generator

Instruction Supervisor
Simplified action list

Right, Forward, Right, 
Forward, Right, Stop

Make a right turn at this 
intersection. Continue forward 
until you reach the next 
intersection then turn right. 
Drive ahead and stop at the 
next traffic light.

Instruction

Figure 4.3 Pipeline of instruction generation for DynamicVLN.

Prompt: You are an annotator helping generate instructions for a vision-and-language navigation task. Below is the 
action list that describes the vehicle’s actions at specific points along the route: <action list> Along this route, the 
vehicle may encounter the following landmarks : <landmark list> .
Given the action list, landmark list, and overview image of the route (with the green line as the route, the red mark as 
the target, and the yellow mark as the start)Key points for generating instructions:
1. The overview image contains route colors, start, and stop markers, which are not visible while driving. Do not 

include these markers in the instructions. Use simple phrases like “stop at the place near the intersection or 
landmark.

2. Accurate landmark references: Only refer to landmarks mentioned in the list. Use their respective indexes accurately.
3. Treat consecutive 'left' or 'right' actions as a single turn at the same location. Use phrases like 'make a left turn' or 

'make a right turn' without adding phrases like 'make a series of turns.’
4. Do not add extra actions: Instructions should only include actions that are explicitly mentioned in the action list. Do 

not introduce new turns or stops. 
Please provide a global summaries navigation instruction similar to these instruction examples.:
1. Go straight then turn right at the first intersection, you will see a stop sign. Stop at the place near to the intersection.
2. Drive straight, and at the third intersection, make a left turn. Continue forward until you reach the bus stop on the 

right. Then stop at the next crosswalk.
3. Head straight along the route until you see the tall building with a red sign. Turn right at that point, proceed forward, 

and make another right turn at the next traffic light. Stop when you reach the intersection.
You don't need to generate too detailed instruction and list them, just use one or two or three simple sentence to 
describe the whole route. Please ensure that the generated instruction: Does not include 'make a series of turns.’ 
Accurately reflects the given actions and landmarks without introducing additional details.

Figure 4.4 The Instruction Generator processes the route overview, action list, and

landmarks to generate an initial navigation instruction.
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Prompt: You are a supervisor tasked with verifying the accuracy of navigation instructions generated for vision-and-
language navigation tasks. And If you verified the instruction with some mistakes, please modify it. You will be given:
1. A simplified action list representing the core sequence of actions: <simplified_action_list>.
2. A generated instruction: <generated instruction>, that describes the route based on overview of route.
Here are key points for verification:
1. Please check the generated instruction follows the exact order of the simplified action list. The instruction should 

describe the actions in sequence.
2. Avoid Series Turns: The Instruction should not include phrases like 'make a series of right turns. or 'make a series of 

left turns.'. If such phrases are found,  replace them with 'make a left turn' or 'make a series of right turns.’
3. No Extra Actions: The instruction should not add extra turns, stops, or actions that are not present in the simplified 

action list.
4. No Extra Landmarks: The instruction should not add extra landmarks (except intersection, traffic sign, traffic light, 

etc.).
Finally, Output only the modified instruction, not the details of verification.

Figure 4.5 The Instruction Supervisor refines the initial instruction by ensuring

alignment with the simplified action list and correcting any discrepancies.

quire the vehicle to stop temporally. In many cases, vehicles may need to stop

at multiple points along the route before they can proceed, rather than at a single

temporal stop. To better understand these dynamics, the distribution of temporal

stops within these routes was analyzed. Each dynamic route involves between

2 and 7 temporal stop actions, reflecting the complexity of real-world scenarios

where vehicles must repeatedly adjust to changing conditions. Furthermore, each

dynamic instance has 2-7 temporal stops. Figure 4.6 illustrates the distribution of

routes based on the number of temporal stops they contain, providing insight into

the frequency and variation of such actions across all collected routes.

4.4 Proposed Method: DynaVLN

This section introduces the DynaVLN model, designed to detect dynamic events

and improve navigation performance in dynamic environments, building upon tra-

ditional VLN models. As illustrated in Figure 4.7, DynaVLN consists of four key

components: the Image Encoder, Instruction Encoder, Dynamic Event De-
tector, and Action Predictor. At each decoding timestep, DynaVLN computes a

visual representation of the agent’s current and previous states in the environment,

integrating previously predicted actions, instruction features, and dynamic event

detection results to predict the next action.
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Figure 4.6 Distribution of Routes Based on the Number of Temporal Stops. This

figure shows the frequency of routes containing different numbers of

temporal stops, reflecting the complexity and variability of dynamic

scenarios in the collected dataset.
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Figure 4.7 Overview of the proposed DynaVLN model. At each decoding timestep,

the CLIP Vision Encoder processes the current and previous images (T and

T − 1) to extract visual representations of the environment. The Instruction

Encoder encodes the navigation instructions to provide linguistic context.

The Dynamic Event Detector identifies dynamic elements, such as moving

vehicles or pedestrians, in the visual scene. These outputs, combined

through a Multi-Head Cross Attention mechanism, are used by the Action

Predictor to generate the next action (at), including temporal stops,

ensuring safe and effective navigation in dynamic environments.

4.4.1 Model Details

Image Encoder. At each timestep t, the agent captures an image view of its

surroundings. The visual representation of the current agent position is computed

by extracting features from the panorama using a pre-trained CLIP Vision En-

coder [119]. This step provides a robust and compact visual embedding vt for

navigating and detecting changes during the driving process.

Instruction Encoder. The instruction encoder processes the natural language

navigation instructions x = {x1, x2, ..., xL}, where L denotes the number of to-

kens in the instruction sequence. Following the approach introduced in Section

2.5.1, each token xi is embedded and encoded using a bidirectional LSTM [37]:

x̂i = embedding(xi) (4.1)

(w1,w2, . . . ,wL), z
w
L = Bi-LSTM(x̂1, x̂2, . . . , x̂L), (4.2)
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where wi represents the hidden representation of token xi, and zwL is the final

cell state of the LSTM. These outputs capture both local (token-level) and global

(sequence-level) contextual information from the navigation instructions.

As in Section 2.5.1, the Instruction Encoder provides a robust representation of

linguistic input, ensuring consistency and adaptability across various VLN tasks.

The use of a bidirectional LSTM enables the model to encode contextual depen-

dencies in both forward and backward directions, which is essential for under-

standing complex navigation instructions.

Dynamic Event Detector To enable the agent to intelligently handle unforeseen

dynamic events without explicit instructions, a Dynamic Event Detector (DED)

was incorporated, and an Attention Modulation Mechanism was proposed that

dynamically adjusts the model’s focus between visual and language features based

on the detected event. This mechanism allows the model to autonomously decide

actions, including temporal stop, to address sudden changes in the environment.

At each timestep t, the DED processes the current visual feature vt and the

previous visual feature vt−1 to compute the event signal et, representing the like-

lihood of a dynamic event. Formally, the event signal is defined as follows: For-

mally, the event signal is defined as follows:

et = σ(MLP([vt − vt−1])) (4.3)

where σ(·) is the sigmoid activation, and MLP denotes a lightweight multi-layer

perceptron. et ∈ [0, 1] indicates the intensity of the detected dynamic event.

The event signal et is then used to modulate the attention mechanism, dynam-

ically altering the interaction between the visual feature vt and the instruction

feature sequence {w1, . . . ,wL}. The modulation affects both the Query (qt) and

the Key/Value representations (kt,vk) as follows:

qt = Linearq([vt; et]) (4.4)

kt,vk = Lineark([w1, . . . ,wL]) · (1− et), Linearv([w1, . . . ,wL]) · (1− et)

(4.5)

where [vt; et] denotes the concatenation of the visual feature and the event signal.

The Key and Value representations are scaled by (1 − et), reducing the influence

of language instructions when a significant dynamic event is detected (et → 1).
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The attention [42] output ft is computed via the scaled dot-product attention

mechanism:

Attention(qt,kt,vk) = softmax

(
qtkt

⊤
√
dk

)
vk (4.6)

where dk is the dimensionality of the Key vectors. The resulting feature ft in-

corporates the adjusted contribution of visual and language features, dynamically

weighted by the presence or absence of a detected event.

Action Predictor. Finally, the attention output ft is concatenated with the

event signal et and passed to the Action Predictor to generate the next action:

at = ActionPredictor([ft; et], at−1) (4.7)

where at is the predicted action (e.g., move forward, turn left, or stop) and at−1

is the previous action.

4.4.2 Loss Function

To train the proposed model effectively, a loss function was designed that jointly

optimizes the performance of the Dynamic Event Detector (DED) and the Ac-
tion Predictor.

Dynamic Event Detector Loss. The DED outputs an event signal et ∈ [0, 1],

representing the probability of a dynamic event occurring at timestep t. The

ground truth event label yt ∈ {0, 1} indicates whether a dynamic event is present.

The detection loss is formulated as a binary cross-entropy loss:

LDED = − 1

N

N∑
t=1

[
yt log(et) + (1− yt) log(1− et)

]
, (4.8)

where N is the total number of samples. This loss ensures that the DED module

learns to predict event probabilities that align with the ground truth labels.

Action Prediction Loss. The Action Predictor generates the probability dis-

tribution over possible actions {a1, a2, ..., aC}, where C is the number of action

classes (e.g., move forward, turn left, stop). The ground truth action label is de-

noted as atrue
t ∈ {1, ..., C}. A categorical cross-entropy loss was used to optimize
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the predicted action distribution:

LAction = − 1

N

N∑
t=1

C∑
i=1

1
[
atrue
t = i

]
logP (at = i | ft, et, at−1) , (4.9)

where P (at = i|ft, et, at−1) is the predicted probability of action i, and ⊮[·] is the

indicator function.

Joint Loss. To jointly optimize both components of the model, the above losses

were combined into a single objective:

L = λ1LDED + λ2LAction, (4.10)

where λ1 and λ2 are balancing weights that control the relative importance of the

two loss terms.

4.5 Experiments

This section presents extensive experiments on our DynamicVLN dataset to eval-

uate our DynaVLN models’ performance on the outdoor VLN task and emergency

accident adaptation.

4.5.1 Implementation Details

Data Processing. A clustering-based approach was adopted to group spatially

proximate waypoints into unified nodes, constructing a node-based navigation

graph for each town map for Vision-and-Language Navigation (VLN) tasks. Specif-

ically, all waypoints extracted from the routes, including those used during naviga-

tion, were collected and clustered based on their spatial proximity. The DBSCAN

algorithm [120], which is effective for identifying arbitrarily shaped clusters with-

out requiring a predefined number of clusters, was utilized for clustering. Each

waypoint was treated as a three-dimensional point (x, y, z) in Cartesian coordi-

nates, and waypoints within a distance threshold (ϵ = 0.5 meters) were grouped

into the same cluster. After clustering, each cluster was assigned a unique node

ID. The navigation graph was then constructed by treating each cluster as a node

and connecting nodes adjacent to the same route.
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Model Details. The proposed framework and baseline models were imple-

mented using PyTorch 2. A pretrained CLIP vision encoder with a ViT backbone

was employed to extract visual features of size 512 from images at each waypoint.

Navigation instructions were tokenized into byte pair encodings (BPE) using a

vocabulary size of 2,000 tokens. The instruction tokens were lower-cased and

embedded into vectors of size 256. For the loss function, the objectives of nav-

igation performance and dynamic event detection were balanced using weights

λ1 = 0.5 and λ2 = 1.0. This prioritization ensures the agent achieves reliable

navigation while accurately detecting dynamic events. In scenarios where ground

truth event labels yt are unavailable, pseudo-labels were generated heuristically.

These heuristics included abrupt changes in the visual scene (e.g., the appear-

ance of obstacles) or significant deviations in the agent’s planned actions (e.g.,

an unexpected stop or turn). This allows the model to handle dynamic events in

complex environments adaptively. Since each town map is unique, it was neces-

sary to construct a separate navigation graph for each town and conduct training

individually for each map. However, this section only presents experimental re-

sults using the Town05 map. Town05 was selected because it contains the largest

number of routes, with a total of 2,611 routes. These routes were randomly split

into training, development, and test sets in a 7:2:1 ratio, resulting in 1,828 routes

for training, 522 for development, and 261 for testing.

4.5.2 Baseline Models

ORAR [4] is a VLN model proposed for outdoor VLN task. This model uses an

LSTM to encode the instruction text and an LSTM to decode the multimodal fea-

tures and predict the following action. ORAR was selected because it is a model

without collision detection and only uses whole images and instruction features

for decision-making. By comparing the results with ORAR, it was demonstrated

that collision detection enhances adaptability to unforeseen events.

2https://pytorch.org/
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4.5.3 Metrics

The following metrics are used to evaluate VLN performance and are introduced

in Chapter 2.6 in detail: (1) Task Completion (TC),(2) Shortest-Path Distance

(SPD), (3) Success weighted by Edit Distance (SED), (4) Coverage weighted

by Length Score (CLS), (5) Normalized Dynamic Time Warping, (6) Success

weighted Dynamic Time Warping (SDTW).

4.5.4 Results

A comprehensive evaluation of the experimental results was provided to assess

DynaVLN’s performance compared to the baseline ORAR across various met-

rics. These results highlight the proposed model’s strengths and limitations, par-

ticularly in handling dynamic navigation environments. The experimental results

are summarized in Table 4.3.

DynaVLN demonstrates higher TC, indicating its ability to navigate more ef-

fectively and reach target destinations more reliably. In terms of SPD, DynaVLN

maintains a closer adherence to the target trajectory, reflecting its capability to

navigate with greater precision. For SED, DynaVLN achieves better alignment

with the ground-truth action sequences, highlighting its accuracy in predicting

correct actions during navigation. Conversely, ORAR achieves a higher CLS, sug-

gesting stronger coverage of the navigation path but potentially less responsive-

ness to dynamic changes. Regarding temporal alignment, ORAR performs better

in static environments, as indicated by its nDTW score. However, DynaVLN ex-

cels in dynamic scenarios, with a significantly higher sDTW score, showcasing

its ability to adapt and succeed in environments with dynamic changes. Overall,

these results suggest that while ORAR is well-suited for structured and static en-

vironments, DynaVLN offers superior adaptability and robustness in dynamic and

complex real-world navigation tasks.
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Table 4.3 Quantitative results comparing ORAR and DynaVLN on navigation

performance metrics. Higher TC and CLS scores indicate better trajectory

completion and coverage length, respectively. Lower SPD, SED, nDTW, and

sDTW scores indicate better alignment with ground truth trajectories.

Method TC ↑ SPD ↓ SED ↑ CLS ↑ nDTW ↑ sDTW ↑

ORAR 1.65 24.02 1.08 16.35 4.15 1.05

DynaVLN 2.74 23.65 1.41 15.07 3.26 2.10

4.6 Conclusion

This chapter addresses the challenge of navigating dynamic environments by in-

troducing the Dynamic Vision-and-Language Navigation (DynamicVLN) task.

The proposed task and dataset aim to bridge the gap between traditional VLN

tasks, which predominantly focus on static environments, and the complexities of

real-world scenarios. By incorporating dynamic elements such as moving vehi-

cles, pedestrians, fluctuating traffic signals, and varying weather conditions, Dy-

namicVLN introduces a more realistic framework for training and evaluating nav-

igation agents. DynamicVLN expands the scope of VLN research by requiring

agents to dynamically adapt to changes in their surroundings while following nat-

ural language instructions. For instance, agents must decide whether to perform

a temporal stop or proceed, depending on the presence of obstacles or changes

in the environment. The proposed DynaNav model integrates visual and linguis-

tic inputs with a Dynamic Detection Module to enhance real-time adaptability,

providing a robust baseline for future advancements in this area.

Limitation. Despite these contributions, there are several limitations in the cur-

rent work. The DynamicVLN dataset, while comprehensive in its incorporation

of dynamic scenarios, is inherently limited by the simulated environment pro-

vided by the CARLA simulator. Real-world datasets may introduce additional

challenges, such as irregular pedestrian behavior, diverse weather patterns, and

unseen environmental complexities, which are not fully captured in the current

dataset. A critical limitation lies in the discrete nature of the DynamicVLN set-

ting. While the dataset includes dynamic elements, the navigation framework
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relies on waypoint-based navigation, where actions are determined at predefined

points along the route. This approach, however, cannot fully represent the neces-

sity for a temporal stop between two waypoints or highlight the agent ’s ability

to make real-time decisions based on continuously changing conditions. To bet-

ter mimic real-world navigation, a continuous spatial setting is essential, where

the agent ’s decisions are influenced by seamless transitions in the environment

rather than discrete, waypoint-to-waypoint actions. Furthermore, the DynaNav

model has only been evaluated within the constraints of the DynamicVLN dataset.

This raises questions about its generalizability to other dynamic datasets or real-

world environments with more complex scenarios. Some dynamic elements in

the dataset, such as traffic signals and vehicle movements, are simulated with

predefined patterns, potentially oversimplifying the unpredictability of real-world

conditions and leading to overfitting to dataset-specific dynamics.

Future Directions. Looking ahead, future work should focus on addressing the

discrete nature of the DynamicVLN task by transitioning from waypoint-based

navigation to a continuous spatial framework. This would enable agents to make

real-time decisions, such as executing a temporal stop, in response to seamlessly

changing environmental conditions. Additionally, expanding the dataset to in-

clude more diverse and complex dynamic scenarios, such as irregular pedestrian

behaviors or erratic vehicle movements, would better reflect the unpredictability

of real-world environments. Improving the adaptability of the DynaNav model is

another key direction. Advanced reinforcement learning techniques or continual

learning approaches could enhance the model ’s ability to generalize to unseen

environments. Real-world validation of navigation models, particularly in urban

settings, is essential to ensure robustness under realistic conditions. Finally, in-

tegrating more nuanced dynamic interactions, such as multi-agent coordination

or simultaneous dynamic elements, could further advance the study of dynamic

navigation systems.
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Chapter 5

Conclusion

This study has made significant advancements in Vision-and-Language Naviga-

tion (VLN) by addressing critical gaps in adaptability and performance under real-

world conditions. Through the development of novel methods and datasets, this

work contributes to enabling agents capable of navigating dynamic, unpredictable

environments and understanding long-term environmental changes. In alignment

with the initial objectives, the contributions span three key areas.

Chapter 2 focused on the development of the OAVLN model to address the

overlooked importance of object tokens in outdoor VLN tasks. By incorporating

object information from on-route landmarks, OAVLN demonstrated superior nav-

igation performance in both seen and unseen environments, as validated through

extensive experiments on two large-scale datasets. The model’s ability to prior-

itize relevant objects during navigation illustrates its effectiveness in improving

scene understanding and action decisions. However, limitations remain regard-

ing data biases and computational demands, paving the way for future efforts to

enhance generalization and efficiency.

Chapter 3 introduced the STVchrono dataset to bridge the gap in real-world

change recognition, emphasizing long-term continuous variations in urban and

natural environments. This aspect is crucial for VLN, where agents must rec-

ognize familiar locations despite infrastructure changes, seasonal shifts, or urban

development. Without modeling long-term changes, VLN systems risk failing in

real-world applications. STVchrono enables sequential change description and
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instance segmentation, helping agents align current observations with past expe-

riences for robust localization. While it sets a new benchmark, challenges like

uneven data distribution and limited change diversity remain. Future research

should integrate change modeling with VLN to enhance adaptability in dynamic,

evolving environments.

Chapter 4 addressed the challenge of navigating unpredictable environments

through the introduction of the DynamicVLN task. By incorporating dynamic

elements such as traffic and weather variations, this work established a realistic

dataset for studying navigation under real-world conditions. The proposed Dy-

naNav model represents a promising step toward enabling agents to make real-

time decisions using multimodal inputs. Future developments will enhance Dy-

naNav’s adaptability and safety in complex, dynamic scenarios.

This study underscores the importance of bridging the gap between static as-

sumptions in traditional VLN tasks and the dynamic, evolving nature of real-world

environments. Moving forward, future work will focus on reducing the com-

putational overhead of VLN models to enable practical deployment in resource-

constrained environments. Datasets like STVchrono and DynamicVLN will be

expanded to cover broader geographic, temporal, and contextual variations, en-

suring that models trained on these datasets can generalize to unseen conditions.

Additionally, efforts will be directed toward developing integrated frameworks

that combine navigation and change recognition tasks, enabling seamless adapta-

tion to dynamic environments.

In summary, this study lays a strong foundation for advancing VLN and its

applications in real-world scenarios. By addressing key challenges in navigation,

scene understanding, and dynamic adaptability, the contributions of this research

pave the way for the development of robust, adaptable systems capable of navi-

gating and reasoning in complex, real-world environments. Future advancements

in VLN, including continuous navigation frameworks and real-world validations,

will further enhance the ability of intelligent agents to operate safely and effi-

ciently in diverse conditions.
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