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Abstract

In the computer vision field, image recognition and understanding are
the main tasks. In particular, dense prediction tasks, such as image
segmentation and depth estimation, are important for image editing
and scene understanding. To solve such tasks, fully convolutional
networks (FCNs), which is a variant of convolutional neural networks
(CNNs), have been proposed and have become a de fact standard
method. Although FCNs achieved better accuracy for image seg-
mentation tasks than traditional methods, detailed information, such
as image edges, boundaries, and small and/or thin objects, is often
missed due to the downsampling layers, which are used for reducing
computational costs and expanding receptive fields. In this thesis,
the detail-preserving framework utilizing superpixels in downsampling
layers is proposed. The proposed method mitigates the detailed in-

formation loss by incorporating it into existing FCNs.

Chapter 1 describes image segmentation, its application, and research

questions.

Chapter 2 describes existing image segmentation methods using classi-

cal Markov random fields and deep neural networks and their variants.

Chapter 3 defines superpixel segmentation as the maximization of
mutual information and then proposes an unsupervised superpixel
segmentation framework using CNNs. The proposed method shows

the CNNs have a strong prior for superpixel segmentation.

Chapter 4 describes graph convolutional networks and then defines
convolution operations for superpixel images. Compared to general
CNNs and the model replacing the convolution with the proposed

convolution shows the effectiveness of superpixels in CNNs.



Chapter 5 proposes the framework implicitly incorporating a super-
pixel scheme into FCNs. The proposed framework demonstrates its
effectiveness in various tasks and models. Moreover, the proposed

framework improves the computational speeds of existing models.

Chapter 6 summarizes the results of this study and discusses future

work.
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Introduction

In this chapter, we first introduce the motivation of image segmentation tasks.
Then, we describe its applications and, finally, the research questions and contri-

butions of this thesis.

1.1 Image Segmentation

Image recognition is the main task in the computer vision fields. Recognizing
images can be achieved in several ways, such as image classification, bounding
box-based detection, and image segmentation. They are widely used in intelligent
systems, such as surveillance systems, automated driving systems, image retrieval,
and image editing. For such tasks, image segmentation is used for the advanced
processing.

For example, Figure 1.1 shows two types of example results for a road recog-
nition task. The bounding box-based recognition roughly recognizes the road
region, while segmentation-based recognition recognizes the road region in pix-
els. For the vision-based autonomous driving systems or the advanced driver-
assistance systems, pixel-based recognition is important in accurately recognising
the drivable region. For image editing, pixel-based recognition is also important
to avoid editing the undesirable region.

As another example, we show the example results of person detection in Fig-

ure 1.2. For object tracking, segmentation-based detection is more useful than
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Figure 1.1: Example results of road recognition. From left to right, the in-

put image, bounding box-based recognition, and segmentation-based recog-
nition. The bounding box cannot represent road regions, while the segmen-

tation mask can represent accurate road regions.

Figure 1.2: Example results of human detection. The bounding boxes

contain the pixels of not only the target object but also the other objects.

The segmentation masks contain only the pixels of the target object.



1.2 Applications of Image Segmentation

bounding box-based detection. Many object tracking algorithms track people
based on the information contained in the recognized region. If one uses bound-
ing box-based recognition, the bounding box contains not only the target objects’
pixels but also other objects’ pixels, as shown in Figure 1.2. Thus, the informa-
tion of other objects may cause the miss assignment for the tracking problem.
From these perspectives, the image segmentation may become a better choice in

industrial scenes to realize the advanced systems.

1.2 Applications of Image Segmentation

Separating a foreground element of an image from its background is a funda-
mental application of image segmentation. Classically, chroma key, which is the
placement of a blue or green screen behind the foreground to be extracted, is
used for compositing digital images in filmmaking [Sawicki, 2007]. Subsequently,
the foreground extraction without a blue or green screen is studied, for exam-
ple, an image matting [Porter and Duff, 1984, Levin et al., 2007, He et al., 2012,
Sun et al., 2004], graph cut [Boykov and Jolly, 2001, Boykov et al., 2001], and
grabcut [Rother et al., 2004].

As an advanced task, semantic segmentation is a multi-region ex-
traction task that is used for scene parsing, as shown in Figure 1.3
(b). In many cases, the regions have human-annotated labels, and se-
mantic segmentation is solved by learning-based approaches, such as
conditional random field (CRF)-based approaches [Shotton et al., 2009b,
Kohli et al., 2009,  Kréhenbiihl and Koltun, 2011]  or  neural  network-
based approaches [Long et al., 2015, Zhao et al., 2017, Chen et al., 2017a,
Chen et al., 2017b, Chen et al., 2018, Yu and Koltun, 2015]. As a more
advanced task, panoptic segmentation has recently been proposed by
[Kirillov et al., 2019b].  Panoptic segmentation is a task combining seman-
tic segmentation with instance segmentation, which simultaneously requires
scene parsing and object detection (Figure 1.3d).

Many advanced recognition systems are built on these segmentation tasks.

Some photo realistic image generation methods using a semantic segmenta-
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(c) instance segmentation (d) panoptic segmentation

Figure 1.3: Illustration of segmentation tasks. (a) input image, (b)
semantic segmentation (per-pixel class labels), (c) instance segmenta-
tion (per-object mask and class label, (d) panoptic segmentation (seman-
tic segmentation + instance segmentation). This figure is taken from

[Kirillov et al., 2019b].

tion map [Park et al., 2019, Johnson et al., 2018]. [Zhi et al., 2019] utilizes se-
mantic segmentation to improve the performance of simultaneous localiza-
tion and mapping (SLAM). For some object tracking benchmarks, instance

masks are provided for the development of accurate object tracking sys-

tems [Voigtlaender et al., 2019, Perazzi et al., 2016, Xu et al., 2018].



1.3 Research Questions and Contributions

1.3 Research Questions and Contributions

Fully convolutional networks (FCNs) proposed by [Long et al., 2015] have
brought significant advances and have become a de facto standard method
for segmentation tasks. However, detailed information, such as high fre-
quency components and object boundaries, are missed due to downsam-
pling operations (e.g., max/average pooling or convolution with a stride of
two).  Therefore, some methods are proposed to mitigate the information
loss. Dilated convolution [Yu and Koltun, 2015], also known as atrous convo-
lution [Chen et al., 2014], is used instead of striding to mitigate information loss.
Trainable decoders are used for recovering lost spatial resolution [Lin et al., 2017,
Ronneberger et al., 2015, Badrinarayanan et al., 2017]. These methods can gen-
erate higher quality segmentation maps than simple FCNs but require large com-
putational costs or trainable parameters. Moreover, they do not explore better
downsampling operation choices.

Thus, our research questions in this thesis are as follows:

1. Do more effective and efficient downsampling operations exist that can help

avoid the loss of the detailed information?

2. If such a downsampling operation exists, can it be integrated into the neural

network scheme?

As effective and efficient downsampling operations, superpixels are classically
used. However, general convolutional neural networks (CNNs) cannot directly
process superpixels because of their irregularity. Thus, to answer the above ques-
tions, we investigate the novel neural network architectures for superpixels. We
first verify that superpixels can potentially improve a CNN’s performance to
answer question 1. To evaluate the effectiveness of superpixels, we propose a
segmentation framework and a convolution operations for superpixels. We next
propose a framework containing a superpixel segmentation scheme in the down-
sampling layers. We show that the method enhances the segmentation accuracy,
i.e., mean intersection over union (mloU), and/or the inference speeds of the
existing architectures.

We summarize our contributions as follows:
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e We propose a superpixel segmentation method based on mutual informa-
tion maximization. The method optimizes a CNN for a single image in
terms of the mutual information maximization objective. The method does
not utilize the image prior except for local smoothness. Nevertheless, the
method generates plausible superpixels and outperforms existing methods

on the popular benchmarks.

e We propose convolution operations for superpixels. We identify superpix-
els as graphs and utilize a graph convolution scheme to process them. The
method outperforms general CNNs with the same configuration on the fore-

ground segmentation tasks.

e We propose an end-to-end image segmentation framework combining su-
perpixels segmentation and superpixel-based downsampling. The proposed
method integrates superpixel segmentation into the downsampling layers
and mitigates information loss. As a result, the propose method improves

the segmentation accuracy and/or inference speed of existing CNNs.
The outline of this thesis is as follows:

o [n Chapter 2, we review the image segmentation methods. We first review
the classical approaches based on the random field and then, describe the
method based on neural networks, especially FCNs. Finally, after we de-
scribe the superpixel segmentation methods, including the clustering-based
approach, the graph-based approach, the energy optimization-based ap-
proach, and the learning-based approach, we discuss the combination of

superpixels and neural networks.

e [n Chapter 3, we first describe the prior that CNNs have and then propose
a superpixel segmentation method, which is related to the work previously
published in [Suzuki, 2020, Suzuki and Aoki, 2020]. The proposed method
uses CNNs, but does not require any training data. We describe the details
of the loss function, which is a key component of the proposed method,
and evaluate our framework in regard to the popular benchmarks for the

superpixel segmentation.
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e In Chapter 4, we first review the recent proposed graph convolutions
and then describe the proposed superpixel convolution and dilated super-
pixel convolution, which are related to the work previously published in
[Suzuki et al., 2018, Suzuki and Aoki, 2018]. Our proposed methods are
provided as an extension of a general convolution operation and dilated
convolution to an image domain. We compare the proposed method to

general convolution using models with the same configuration.

e [n Chapter 5, we propose the end-to-end dense prediction framework. We
propose an implicit superpixel segmentation scheme that is able to be in-
tegrated into existing CNN architectures without changes in their feed-
forward paths. Unlike existing methods, the proposed method does not
require extra networks to generate superpixels. We show that the proposed
method improves the segmentation accuracy or inference speed of the ex-
isting CNNs.

e In Chapter 6, we summarize all the proposed methods and evaluations in

this thesis. Then, we discuss future research.






Image Segmentation: A Review

In this chapter, we review image segmentation methods. We fist review classical
approaches using CRFs, which are still in use today and then describe recent
approaches using CNNs. Finally, after we describe superpixel segmentation which
is widely used in preprocessing for various image processing tasks, we discuss the

combination of superpixels and CNNs.

2.1 Image Segmentation: Classical Approaches

Image segmentation has been studied for a wide range of pur-
poses. Many tasks impose various conditions, such as image mat-
ting [Levin et al., 2007, He et al., 2012, Sun et al., 2004], using a trimap;
graph cuts [Boykov and Jolly, 2001, Boykov et al., 2001], using scribbles; and
the GrabCut method [Rother et al., 2004], using bounding bozes. In this thesis,
we focus on learning-based approaches that assume that human annotated
images are given. Thus, in this section, we mainly review CRF-based approaches
as classical methods.

Originally, [Ren and Malik, 2003] introduced a learning-based image segmen-
tation method, which groups pixels into superpixels and classifies each segment
by a simple logistic regression classifier trained by human segmented images.

Subsequently, He et al. proposed an approach to consider information about
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many different object classes by introducing CRFs [He et al., 2004] and extend-
ing them with a mixture of CRFs (MoCRF) [He et al., 2006]. Let X = {@;}ics
be the input image, where § denotes a set of indices of superpixels and a; denotes
the feature vector obtained from the i-th superpixel. Superpixel {«;} is assigned
labels L = {l;} from a finite label set £. Given the context variable ¢ from a
dataset €, MoCRF is defined as follows:

P(LIX) =Y Pu(L|X, ¢)Pa(c|X), (2.1)

cee
where Py(L|X, ¢) and Pg(c|X) are a CRF and a gating function. Py (L|X, ¢)
consists of three terms: (1) a local feature term, (2) a pair-wise feature term, and
(3) a global feature term. Pg(c|X) is a simple multi-layer perceptron. Given a
set of labeled images X = {(X",L"}, the parameters of MoCRF are estimated

based on the conditional maximum likelihood criterion:

O = arg max log P(L"|X"), 2.2
g1 zn: g P(L"X") (22)

where © denotes all parameters in the model.

Shotton et al. also proposed a CRF-based multi-class segmentation
method [Shotton et al., 2006, Shotton et al., 2009a] called TextonBoost. Texton-
Boost’s CRFs consist of shape-texture potentials, edge potentials, color poten-
tials, and location potentials, and their parameters are estimated by a piece-
wise training procedure [McCallum and Sutton, 2005]. Moreover, TextonBoost
utilizes textons [Leung and Malik, 2001] to capture compact representations for
the range of different appearances of an object and a joint boosting algo-
rithm [Torralba et al., 2004] as a multi-class classifier. Kohli et al. proposed
Robust P™ CRFs using higher order potentials and improved the segmentation
accuracy around object boundaries, although it is not a learning-based method.

Krahenbiihl and Koltun proposed fully connected CRF's for the original pixel
space [Krdhenbiihl and Koltun, 2011]. They realize the efficient inference in fully
connected CRFs by a mean field approximation. Let X and £ be a random
field defined over a set of variables {Xi,..., Xy} and a set of possible labels
{li,...,lx}. Also, we define a random field I over variables {I,...,Iy}. A CRF

10
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(X, I) is characterized by a Gibbs distribution P(X|I). Given the complete graph
G on the image X, the Gibbs energy of a labeling x € £V is defined as follows:

E(X)ZZ wu m) o+ w,, Ti,1;) (2.3)

unary potentlal i<j

pair-wise potentlal
where ¢ and j range from 1 to N. The unary potential is computed as a classifier,

and the pair-wise potential is defined as follows:

K
(i, ;) = plg, y) > w™E (£ £), (24)

m=1
where k™ denotes a Gaussian kernel, f; and f; are feature vectors for pixel i and
4, w™ are linear combination weights, and s is a label compatibility function.
Instead of an exact distribution P, Krahenbiihl and Koltun compute a distribu-
tion Q(X) that minimizes the KL divergence D(Q||P) among all distributions @
that can be expressed as a product of independent marginals, Q(X) = [[. @:(X;).

Then, the following iterative update equation is derived:

Qi(xi:l):%exp{ u(x;) Z,ull Zw Zk (£, £)Q;( )}

el m=1 jF#i
(2.5)

This mean field approximations enable the computation of a fully connected CRFs
on a graph that has billions of edges.

Figure 2.1 shows example results of various CRF-based methods. The ro-
bust P* CRF's [Kohli et al., 2009] generate a better segmentation result than the
grid CRFs [Shotton et al., 2009a] because of the higher order potentials. The
fully connected CRFs fit the high-frequency components because of the dense

connections of CRF's.

2.2 Image Segmentation in A Neural Network

Era

In 2012, Alex et al. proposed AlexNet using CNNs for performing large-scale
image classification tasks [Krizhevsky et al., 2017] and demonstrating their effec-

tiveness. Many researches were inspired their work, and then, CNNs have become

11
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Figure 2.1: Example results of various CRF-based semantic seg-

mentation methods. From left to right, an input image, grid
CRF's [Shotton et al., 2009a], robust P™ CRFs [Kohli et al., 2009], fully con-
nected CRF's [Kréhenbiihl and Koltun, 2011], and ground truth. The results
are taken from [Krahenbiihl and Koltun, 2011].

essential tools in some research fields, such as computer vision, natural language
processing, and signal processing. Image segmentation was also affected by the

success of AlexNet.

2.2.1 Early Work for Image Segmentation Using Neural
Networks

In the case of image segmentation tasks, patch-based classification mod-
els have been proposed [Mnih and Hinton, 2010, Mnih and Hinton, 2012,
Ciresan et al., 2012, Pinheiro and Collobert, 2014, Saito et al., 2016], which di-
vide an image into patches, classify each patch, and identify the predicted label
as the label of the centroid pixel of the patch.

Farabet et al. proposed a method using hierarchical features obtained by
CNNs [Farabet et al., 2012]. The method combines the hierarchical features and
superpixels and predicts semantic labels from raw pixels by CRFs.

These methods have demonstrated good results on several segmentation tasks,
but they have some issues. The patch-based approaches accept only a fixed

input size of images. Thus, one needs to preprocess an input image, such as

12



2.2 Image Segmentation in A Neural Network Era

resizing, and it may generate undesirable artifacts. The method proposed by
[Farabet et al., 2012 does not require such preprocessing, but their system flow
is slightly complex. As a result, FCNs [Long et al., 2015] (introduced in the next
section) have been proposed and have become the de fact standard for dense

prediction tasks, such as image segmentation.

2.2.2 Fully Convolutional Neural Networks

Long et al. proposed FCNs [Long et al., 2015] for semantic segmentation tasks,
and other various derivative models have been proposed [Chen et al., 2014,
Chen et al., 2017b, Chen et al., 2018, Lin et al., 2017, Ronneberger et al., 2015,
Yu and Koltun, 2015]. FCNs consist of only convolutional layers with nonlinear
activation functions, and arbitrary-sized inputs can be fed into FCNs because
convolution operations do not depend on the input size. Thus, the training pro-
tocol of FCNs is simple, but FCNs show better segmentation accuracy than other
methods [Gupta et al., 2013, Farabet et al., 2012, Pinheiro and Collobert, 2014].
As a results, the applications of FCNs have been extended to various tasks, such as
depth estimation [Fu et al., 2018, Godard et al., 2017, Godard et al., 2019], op-
tical flow estimation [Dosovitskiy et al., 2015, Ilg et al., 2017, Sun et al., 2018],
superpixel segmentation [Jampani et al., 2018, Suzuki, 2020, Tu et al., 2018,
Yang et al., 2020, Suzuki, 2021], and fundamental inverse problems (e.g., de-
blurring [Nah et al., 2017, Tao et al., 2018] and inpainting [lizuka et al., 2017,
Yeh et al., 2017]).

Long et al. proposed three types of FCNs: FCN-8s, FCN-16s, and FCN-32s.
The number at the end denotes the output stride. For example, the FCN-32s
generates a segmentation map with a reduced spatial resolution of 1/32 of the
input size. Because the FCN-32s uses bilinear interpolation, which is a static
and linear interpolation method, to recover the lost spatial resolution, but local
structures such as object boundaries are often missed. Although FCN-16s and
FCN-8s mitigate the issue by aggregating the predictions generated from high-
resolution intermediate feature maps, the issue still remain, as shown in Figure
2.2. Moreover, this issue may be caused by the methods that generate the pre-

diction map from coarse outputs by utilizing bilinear interpolation. Therefore,

13



2. IMAGE SEGMENTATION: A REVIEW

Figure 2.2: Example results of FCN-8s. From left to right, the input image,

the ground truth, and the prediction. The predictions miss accurate object

boundaries. These results are taken from [Long et al., 2015].

14



2.2 Image Segmentation in A Neural Network Era

to generate a high-resolution map, many existing methods utilize a trainable
decoder or replace the striding with atrous convolution, also known as dilated
convolution [Chen et al., 2014, Yu and Koltun, 2015].

The encoder-decoder models [Badrinarayanan et al., 2017, Lin et al., 2017,
Noh et al., 2015, Ronneberger et al., 2015, Li et al., 2020] recover the lost res-
olution and local structure using a trainable decoder that consists of trans-
posed convolutions or bilinear interpolations with some convolution layers. Seg-
Net [Badrinarayanan et al., 2017] uses a trainable decoder that has an architec-
ture symmetric to its encoder (Figure 2.3a). Moreover, SegNet uses sampled
indices in the downsampling layers in the encoder to upsample low-resolution
maps. SegNet can recover the detailed structures in images, but recovered maps
are sparse. Thus, the decoder needs the same number of convolution layers as
the encoder to fill holes. To avoid it, transposed convolutions, which recover the
lost resolution by trainable filters, are often used.

SegNet and some similar architectures [Noh et al., 2015, Kendall et al., 2015]
use only low level information, such as pooling indices, and/or depend on the
learned convolution to recover the resolution. Therefore, the decoder often leads
to wrong structures. U-Net [Ronneberger et al., 2015] utilizes not only downsam-
pled feature maps but also feature maps before downsampling by skip connections
to recover the resolution (Figure 2.3b). Because of the skip connections, U-Net
can recover detailed structures, and it is widely used in various tasks, such as im-
age generation [Schonfeld et al., 2020] and image editing [Isola et al., 2017]. Such
encoder-decoder models can generate a high-resolution map but require additional
layers and parameters for the decoder.

Another approach to mitigate information loss due to downsampling is atrous
convolution [Chen et al., 2014, Yu and Koltun, 2015], also known as dilated con-
volution [Yu and Koltun, 2015]. It efficiently expands receptive fields instead of
striding. Many modern architectures, such as PSPNet [Zhao et al., 2017] and
DeepLabv3 [Chen et al., 2017b], use atrous convolution and generally generate
a prediction map with an output stride of eight, meaning the resolution of the
predicted map is eight times smaller than that of the input image. Although such

models demonstrate effective results, they typically require high computational
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Figure 2.3: Illustration of (a) SegNet [Badrinarayanan et al., 2017]

and (b) U-Net [Ronneberger et al., 2015].

These figures are taken from

[Badrinarayanan et al., 2017] and [Ronneberger et al., 2015], respectively.
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2.3 Superpixel Segmentation

costs because they discard some downsampling operations and process a large
number of pixels in intermediate layers.

Deeplab [Chen et al., 2017a] and CRF as RNN [Zheng et al., 2015] utilize
fully connected CRFs [Kréhenbiihl and Koltun, 2011] for postprocessing to re-
fine the segmentation results. In particular, [Zheng et al., 2015] realize end-to-
end training and simplify the system flow by defining CRFs as recurrent neural
networks. CRFs and other techniques, including atrous convolution, decoder,
and our proposed method in Chapter 5, are compatible, and their combination

may produce even better results.

2.3 Superpixel Segmentation

As a detail-preserving complexity reduction process for image data, super-
pixel segmentation is classically used [Ren and Malik, 2003, He et al., 2006,
Uijlings et al., 2013, Matsuo and Aoki, 2015, Takayama et al., 2016]; it groups
pixels similar in color and other low-level properties (Figure 2.4).  Su-
perpixels can reduce the complexity of image data while preserving ob-
ject boundaries and semantics. Some existing neural network architectures
utilize superpixels [Gadde et al., 2016, Knyazev et al., 2019, Kwak et al., 2017,
Suzuki et al., 2018, Yang et al., 2020, Zhang et al., 2019]. Superpixels were orig-
inally proposed by [Ren and Malik, 2003] and were realized by the normalized
cut algorithm [Shi and Malik, 2000]. In this section, we categorize superpixel

segmentation methods into four types and review them.

2.3.1 Clustering-based Method

SLIC [Achanta et al., 2012] is a simple method based on k-means clustering in
the labzy color-image plane space. Let (I,a,b)" and (z,y)" be the CIELAB
space and pixel’s position. SLIC initializes k cluster centers as the centroids of
the regular grid as shown in Figure 2.5. Many other superpixel segmentation

approaches adopt this initialization procedure. Then, the distance function for
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Figure 2.4: Example results of superpixels. The results are taken form

[Achanta et al., 2012].
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2.3 Superpixel Segmentation

Figure 2.5: Illustration of centroid initialization in SLIC when the number
of initial superpixels is 192. The left image denotes an input image, and the
right image denotes the boundary of initial superpixels. The centroid has

the mean position and color of the pixels contained in each grid.

k-means clustering in SLIC is defined as follows:

D := \/dg + (%) m?2, (2.6)

where d. and d; denote the Euclidean distance in the CIELAB space and pixel

position space. S is the grid interval of the initial regular grid, and m is a weight
parameter to balance the importance between color similarity and spatial proxim-
ity. Moreover, [Achanta et al., 2012] extend SLIC to supervoxels by introducing
the z-coordinate.

SLIC is a popular method that is widely used because of its simple algorithm.
There are many derivative methods; manifold SLIC [Liu et al., 2016], which maps
an image into a 2-dimensional manifold M C R® and utilizes a better distance
measure. DASP [Weikersdorfer et al., 2012] utilizes depth as additional informa-
tion to generate better superpixels.

Clustering-based methods are simple but effective methods. However, they do
not guarantee the connectivity of pixels assigned to the same superpixel. There-

fore, the methods generally require postprocessing to enforce the connectivity.
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2.3.2 Graph-based Method

Graph-based methods formulate superpixel segmentation as graph par-
titioning [Grady, 2006, Liu et al., 2011, Veksler et al., 2010]. Normalizing
cut [Shi and Malik, 2000] is a popular graph-based method, which is especially
used in CRF-based segmentation [Ren and Malik, 2003, He et al., 2006]. Nor-
malizing cut produces regular, visually pleasing superpixels, but it requires
O(N'.5) complexity.

Felzenswalb and Huttenlocher [Felzenszwalb and Huttenlocher, 2004] pro-
posed a more efficient graph-based method. Let G = (V,E) be a graph on
an image with n vertices and m edges, and S = (C1, ..., C;) be a set of segments,
where C,. denotes a set of the vertices. Then, their algorithm is represented as

follows:
1. Sort E into m = (01, ...,0s) by non-decreasing edge weight.
2. Start with segmentation S°, where each vertex v; is in its own component.
3. Repeat step 4 for ¢ =1,...,m.

4. Construct S? given S9! as follows. Let v; and v; denote the vertices con-
nected by the ¢-th edge in the ordering; that is o, = (v;, v;). If v; and v; are
in disjoint components of S7! and w(o,) is small compared to the inter-
nal difference of both those components, then merge the two components;

otherwise, do nothing.
5. Return S = S™.

The algorithm runs in O(m logm), which is more efficiently than normalizing cut.

2.3.3 Energy Optimization

Superpixel segmentation based on energy optimization it-
eratively optimizes a formulated energy [Mester et al., 2011,
Van den Bergh et al., 2012, Tasli et al., 2013, Yao et al., 2015]. For exam-
ple, SEEDS [Van den Bergh et al., 2012] defines the energy function consisting

of a color distribution term and a boundary term. The energy function of
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ETPS [Yao et al., 2015] consists of five terms, a shape regularization term, an
appearance coherence term, a boundary length term, a topology preservation
term, and a minimum size term. Because of the topology preservation term
defined as Dirac’s delta function, ETPS preserves pixel connectivity and does
not require postprocessing to enforce the connectivity. Thus, ETPS generates
high-quality superpixels in realtime.

As a heterogeneous approach, Kanezaki proposed a CNN-based
method [Kanezaki, 2018]. Kanezaki’s method is also classified into the en-
ergy optimization method, which optimizes the CNN’s parameters to minimize
the energy function. The method cannot control the number of segment; hence,
strictly speaking, it is not superpixel segmentation. The method proposed in

Chapter 3 is inspired by the method and its insight.

2.3.4 Learning-based Method

Recently, learning-based superpixel segmentation methods have been proposed.
Learning-based superpixel segmentation has several challenges: (1) no ground
truth exists for superpixels, (2) the indices of different superpixels are interchange-
able, and (3) existing superpixel segmentation methods are not differentiable.

Tu et al. [Tu et al., 2018] attacked these challenges and proposed SEAL. SEAL
learns pixel affinities using a proposed segmentation-aware loss. Given the learned
CNNs, SEAL generates superpixels using ERS [Liu et al., 2011] with the affinity
generated CNNs. SEAL significantly improves the quality of superpixels, but the
training procedure is not superpixel aware. Moreover, SEAL is not an end-to-end
framework; hence, computational overheads are inevitable.

[Jampani et al., 2018] proposed an end-to-end superpixel segmentation frame-
work, called the superpixel sampling network (SSN). Jampani et al. made the
SLIC procedure differentiable and established the end-to-end framework. Let
I € R™* be the CIELAB image with pixel positoins, where n denotes the num-
ber of pixels. Then, the SSN extracts k-dimensional pixel features with CNNs,
F: 1 — F € R™* and generates soft superpixel associations ) € R™*™ with the
following differentiable SLIC.

1. Initialize superpixel centers S° € R with the same procedure as SLIC.
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2. Repeat step 3 fort=1,... 0.

3. Compute the assignment between each pixel p and the surrounding su-
perpixel i, Qb = exp(—||F, — S{'||*). Compute new superpixel centers,

1 . _
Sf = z_itZZ=1 ;iFI” Zf = Zp an

Optionally, the SSN computes hard-associations H) = -argmax Qy; and enforces
the connectivity in the same way as SLIC. To train the éﬁﬁé?jgnlpani et al. also
proposed the task-specific reconstruction loss, which is defined as L(R, QQTR),
where R € R"*! denotes the pixel-wise ground truth, and Q and Q are row-wise

and column-wise normalized matrix of ().

[Yang et al., 2020] proposed an end-to-end one-shot framework, which im-
proves the computational overheads of SSN. SSN requires an iterative procedure
for differentiable SLIC, and Yang et al. pointed out its computational overheads.
Their proposed method defines superpixel segmentation as a classification prob-
lem. The method directly predicts the soft assignment matrix ) through the
softmax function. The method is trained with the similar reconstruction loss
to the SSN. Yang et al. combined the proposed superpixel segmentation net-
work with PSMNet, which is the depth prediction network; it shows that the

effectiveness of end-to-end training on the depth estimation task.

Superpixels were developed as preprocessing for the image processing; hence,
one think that integrating superpixels into CNNs may be slightly uncomfortable.
However, we exploits only the concept of the superpixels, i.e., the detail-preserving
pooling. The proposed method introduced in Chapter 5 does not use superpixels
as downsampling, but as data representation. The downsampled feature maps
have grid structures, but grid cells correspond to superpixels. As a results, the
proposed method can realize the detail-preserving image segmentation in the

general CNNs.
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2.4 Convolutional Neural Networks with Super-
pixels

Combining CNNs with superpixels comes with some challenges. The reason is
the irregularity of superpixels, meaning that the pixels on images are aligned on
a regular grid, but superpixels are not. [Yang et al., 2020] combined them by
assuming that superpixels are aligned on a regular grid and showed good results.
However, the two networks work independently; one is for superpixel segmen-
tation, and the other is for the task of interest. Bronstein et al. proposed the
graph convolution and utilized it for superpixel-based handwritten digit recogni-
tion [Monti et al., 2017]. Graph convolution is one way to combine superpixels
with neural networks, but existing CNN models do not utilize it the same way.

The goal of this thesis is to integrate a superpixel segmentation scheme into
general CNN frameworks without additional segmentation networks. We first in-
vestigate the prior of CNNs for superpixel segmentation in Chapter 4 and then the
effectiveness of superpixel-based segmentation in Chapter 3. Finally, we propose
the integrated framework in Chapter 5.

Unlike detail-preserving pooling [Saeedan et al., 2018], the proposed method
focuses on the upsampling, i.e., the proposed method preserves the detailed in-
formation to upsample the low-resolution outputs. Thus, the aim of the proposed
method is similar to the trainable decoder. However, the detail-preserving pooling
preserves the information to recognize and understand the image. In summary,
the detail-preserving pooling is for image-to-vector tasks, such as image classifica-
tion, and the proposed method for image-to-image tasks, such as dense prediction
tasks.
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3

Superpixel Segmentation via
Convolutional Neural Networks

with a DIP framework

Superpixels are low-dimensional representations for images and generally
given as a set of pixels similar in color and other low-level properties
(e.g., SLIC [Achanta et al., 2012], SEEDS [Van den Bergh et al., 2012],
ETPS [Yao et al., 2015, and Felzenswalb and Huttenlocher’s method
(FH) [Felzenszwalb and Huttenlocher, 2004]). Superpixel segmentation is
generally used as preprocessing for image processing tasks.

Many existing methods depend on local and low-level properties, such as
local connectivity, color, and positions, to generate superpixels. If the number
of superpixels is large, the methods using the properties work well because the
images almost consist of low-frequency components and locally consist of pixels
having the same color. However, if the number of superpixels is small, superpixels
need to group a wide range of pixels with various properties, and it is a difficult
task for the methods using the local and low-level properties. Figure 3.1 shows
the result in such a case.

To introduce non-local properties into superpixel segmentation, we

propose a CNN-based superpixel segmentation method. According to
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3. SUPERPIXEL SEGMENTATION VIA CONVOLUTIONAL
NEURAL NETWORKS WITH A DIP FRAMEWORK

Figure 3.1: Example result of ETPS [Yao et al., 2015] with 25 superpix-
els. Parts of the object and background pixels are grouped into the same

superpixel.

[Ulyanov et al., 2018], CNNs have a prior for images even though it is not
trained. In fact, CNNs can produce much cleaner results with sharper edges
for inverse problems than methods using the hand-crafted prior. To lever-
age the CNNs’ prior, we utilize the same procedure as deep image prior
(DIP) [Ulyanov et al., 2018], which optimizes a randomly-initialized CNN using
a single image in inference time without labels. We assume that the prior verified
by [Ulyanov et al., 2018] also works well for superpixel segmentation, especially
for capturing a global structure. If the prior works as expected, our CNN-based
method should have better performance than other methods with a small number
of superpixels.

In the rest of this chapter, we firstly introduce DIP, which was demonstrated
by [Ulyanov et al., 2018], and then we propose our CNN-based superpixel seg-
mentation method. Finally, we evaluate our proposed method on the popular

superpixel segmentation benchmarks.
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3.1 Image Prior of Convolutional Neural Net-
works

CNNs have achieved remarkable results for several computer vision tasks, as
already described. We believe that the achievement is a result of not only the
large amount of data and general-purpose computing on graphics processing units
(GPGPU) but also a CNNs’ prior.

Indeed, [Ulyanov et al., 2018] showed that CNNs have a strong prior for image
data. They prove it with standard inverse problems, such as denoising, super-
resolution, and image restoration. The inverse problems result in having to re-
produce the original signal from the observed signal.

Classically, the inverse problems are basically solved by energy minimization
problems; for example, the denoising problem can be solved as the least squares

problem as follows:

min || — [, (3.1)
I

where I and I are the observed image and the variable, respectively; || - ||? de-
notes squared L2-norm. The solution of eq. (3.1) is I = I, and it completely
reconstructs the observed image. Thus, eq. (3.1) is generally introduced a prior

term as a regularizer as follows:
min || — I]|? + AR(]), (3.2)
i

where R(-) indicates the prior term, and A is the coefficient. For the image data,

the prior R(-) may be the total variation,
TV(I) =Y 0.1+ > 0,1, (3.3)
P P

where O, 1 denote the image gradient. Note that Zp denotes the sum of all the
pixels of the gradient image.

As seen in eq. (3.2), the prior term is necessary to predict the original signal
from the observed signal because the observed signal is reconstructed if there is

no prior term. However, Ulyanov et al. [Ulyanov et al., 2018] showed that the
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Figure 3.2: Example results of denoising (top) and super-resolution

(bottom) by DIP [Ulyanov et al., 2018]; (a), (b), and (c) denote the

original image, observed image (the results of bilinear interpolation for
super-resolution), and the DIP result.  The results are taken from

[Ulyanov et al., 2018].

randomly initialized CNNs can predict the original image without training data

by optimizing its parameters with reference to the following objective function:
min |1~ fu(2)] (3.4)

where fp(-) denotes the CNNs parameterized 6, and z denotes the fixed random
vector whose dimension is generally lower than that of the observation image.
Example results of denoising and super-resolution by DIP are shown in Figure

3.2.

Ulyanov et al. considered that the unreasonable fact is caused by the prior
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Figure 3.3: Overview of our proposed superpixel segmentation method.
We define superpixel segmentation as the N-class classification task. The

parameters of CNNs are optimized to minimize eq. (3.6) for a single image.

of the CNNs, which they refer to as DIP. In other words, the CNNs can capture
the image structure without training from a large amount of data. Therefore, to
generate superpixels using the global information and image structure informa-
tion, such as object and background structure, we propose CNN-based superpixel

segmentation method that utilizes the prior.

3.2 Superpixel Segmentation via Convolutional
Neural Networks

Our proposed method is built on the DIP framework; the method receives an
image as input and optimizes a randomly initialized CNN. However, the DIP
framework aims to solve inverse problems, and superpixel segmentation is out
of scope. Therefore, we design an objective function to execute superpixel seg-
mentation with the DIP procedure. The proposed method defines superpixel
segmentation as an N-class classification task, and our proposed objective func-

tion is based on the mutual information. We show an overview in Figure 3.3.

Let I € R¥*WXC he an input image, where H, W, and C' denote image height,
width, and input channels (typically RGB), respectively. Our goal is to assign
superpixels 8 = {s1,...,sny} to all pixels, where s, denotes the n-th superpixel

to be a set of pixels, and the number of superpixels N is a hyperparemeter.
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Note that the proposed method allows s, to be an empty set. Therefore, the
hyperparameter N is the upper bound of the number of superpixels.

Let P € REXWxN, > Prwn = 1 be a probabilistic representation of super-
pixels, where R, indicates non-negative real number. The superpixel assigned to

a pixel at (h,w) is as follows:

Sk = {xh,w

where z,,, denotes the pixel as (h,w). We obtain P from an input through the

n

k = arg maxPh,w,n} , (3.5)

CNNs, fg : I — P, where 6 denotes the CNNs’ parameters. The parameters are

optimized to minimize the following objective function:
Lobjective = Lmi + CV'Csmooth + ﬂ'creconsa (36)

where L., Lomooths and L, econs denote a mutual information term for unsuper-
vised, respectively; « and [ are hyperparemeters balancing the importance of

each term.

3.2.1 Mutual Information

L is a mutual information term between an input image and the probability,

which was originally proposed by [Bridle et al., 1992]. L, is as follows:
1 R R
i 1= hz Xn: —Phwn10g Prapn + A Zn: P,log P, (3.7)

where P € RY , If’n = ﬁ Zh’w P, .n denotes the mean value of the probability
vectors over all the pixels. The first term is the mean of the entropy of P, € RY
over all the pixels, and the minimization of it encourages deterministic superpixel
assignment. The second term is the negative entropy of the mean vector over all
the probability vectors, and the minimization of it encourages the size of each
superpixel to be uniform.

Unlike the mutual information proposed by [Bridle et al., 1992], we introduce
a scalar value A\ as a coefficient of the second term to control the number of

superpixels. When A is small, the model tends to try to segment an image with
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Figure 3.4: Example results of the proposed method with various A values.

When X increases, the number of superpixels also increases.

a small number of superpixels because the first term becomes dominant, and the
model ignores the second term. As A increases, the number of superpixels given
by the CNN converges on N. However, if A is too large, P}, tends to become
uniform because the second term becomes dominant and the uniform probability
is a local minimum. In practice, the proposed method works well when A is within

[0, 3]. We show example results with various A values in Figure 3.4.

3.2.2 Spatial Smoothness

The smoothness term is a basic prior for inverse problems in image processing

tasks, which quantifies the difference between adjacent pixels. We define Lg00th

as follows:
1
Lot = —— (Hazphw| e 10l 111, Py | |lef|\ay1h,wu§/a) . (38)
HW — ’ ’
where 9 and || - |[;1,2) denote the image gradients and {l;,ls}-norm. Note that

the image gradient is calculated as 0,1}, 4 = Ihw— Ihw-1;1 <w < W. Py, € ]Rf
and Iy, € RY are the vectors at (h,w) of P and I, respectively; o is a scalar
value, and we set it to 8 in this thesis. Lgnootn 1S the same as proposed in
[Godard et al., 2017].

Unlike the total variation that is used for the same purpose as Lgnootn i
many previous methods, Lgnootn allows that the pixel has different values when
the pixel values in the original input are different from an adjacent pixel value.

Therefore, Lgno0tn €ncourages boundary-aware superpixel segmentation.
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3.2.3 Image Reconstruction As an Auxiliary Task

Eq. (3.7) and (3.8) are enough to generate superpixels. In fact, by optimiz-
ing the parameters of the CNNs with reference to the sum of eq. (3.7) and
(3.8), the proposed method generates plausible superpixels, as seen in the exper-
iments. Moreover, our proposed method can generate a plausible result even if
A in eq. (3.7) is zero and the pixel-wise weights in eq. (3.8) are omitted (i.e.,
77 2w 102 Prwllt + 110y Prw|l1). Under the above condition, a trivial solution
assigns the same one-hot value to all the pixels, such as P, = (1,0,0,...,0).
But, as shown in Figure 3.5, the proposed method avoids the trivial solution.
However, the solution of eq. (3.7) does not depend on the input image, and
eq. (3.8) strongly depends on the edge. Therefore, we propose reconstruction
loss to make the generated image-specific superpixels. The reconstruction loss is

as follows:

Lrocons = H#WC };C([h,w,c — Thwe)?. (3.9)

This is the same as the DIP objective function.
It is an irrelevant task for the superpixel segmentation to minimize the recon-
struction loss. However, adding the reconstruction loss into the objective function
empirically improves the superpixel quality. We evaluate its improvement in the

experiments.

3.2.4 Empirical Studies

As the DIP uses early stopping [Morgan and Bourlard, 1990] to plausibly solve
the inverse problem, our CNN-based superpixel segmentation also uses two tech-
niques: coordinate input and instance normalization [Ulyanov et al., 2016]. Thus,
we introduce the techniques and justify them in this section,

Coordinate input. We input not only the original image but also the pixel
coordinate, because the convolution operation has the translation invariant, and
it causes unconnected components.

Use of  instance normalization. Instance  normaliza-

tion [Ulyanov et al., 2016] is the normalization method for CNNs. It normalizes
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2 iterations

79-

Obtained superpixels (100 iterations)

Figure 3.5: The result of the proposed method with A = 0, a = 0, and
the smoothness loss without the pixel-wise weights. The proposed method
avoids the trivial solution and generates plausible superpixels even if the

objective function consists of only the pixel-wise entropy.
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improves L econs i both methods.

the input whose mean and variance are 0 and 1, respectively. The detail of
the normalization layer is available in Appendix B.1. Because of instance
normalization, the entropy of the probability P depends on the affine parameters
in the instance normalization layer. As a result, the optimization becomes
slightly easy, and the model can find a better solution. We show this fact in
Figure 3.6.

The pseudo-code of our algorithm is available in Algorithm 1.

3.3 Evaluation

The goal of the evaluation is to verify that the CNN can capture the non-local
and high-level features. We evaluate our proposed method on the popular bench-

marks [Stutz et al., 2018].
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Algorithm 1 CNN-based superpixel segmentation

1: Input: An image I € R¥>*W*C pixel locations X € RT*W*2: hyperparame-
ters: the number of superpixels N, coefficients (A, «, ), number of iteration
T, and learning rate n
2: Output: Superpixels §
3: Initialize CNN with randomly sampled parameters 6,
fo: (I, X) = (P,1)
4: fort=1,...,7T do
5:  Get probability and reconstructed image,
(P, ) « foll, X)

6:  Calculate Lopjective

7. Update parameters by gradient descent,
0 < 0 — 1% L opjective

8: end for

9: Assign superpixels,

sk = {xhwlk = argmax,, Py}

3.3.1 Metrics

We use standard metrics for superpixel segmentation to evaluate the performance,
achievable segmentation accuracy (ASA), and boundary recall (BR). ASA is a
metric to quantify the achievable accuracy of superpixel-based segmentation. It
is defined as follows:
ASA(S,G) = 2 max; |si N gj|’ (3.10)
i lgil

where G = {g1,...,9u} denotes a set of ground-truth segments and g,, denotes a

set of pixels. 8 = {s;} denotes a set of superpixels, and s; denotes a set of pixels;
| - | indicates the size of the set.
BR quantifies the recall of the boundary between segments in ground-truth
labels. BR is defined as follows:
TP(BY, BY)
TP(BY, BS) + FN(BS5, BS)’

BR(B®, BY) := (3.11)
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where BS = {b5,...} and BS = {b} ...} denote a set of boundary pixels in § and
G. FN and TP are the number of false negatives and true positives boundary
pixels, respectively. If a boundary pixel in § exists within a (2¢ + 1) x (2¢ + 1)
local patch centered on an arbitrary boundary pixel in G, the pixel is counted as

TP. We set € to 1 in our experiments.

3.3.2 Implementation Details

We evaluate the proposed method with the five-layer CNN with ReLLU non-
linearity [Krizhevsky et al., 2012], as shown in Table 3.1. The channels for each
layer except for the output layer are set to 32 - 2°=!, where [ indicates the
layer index, [ € [0,5]. We use the softmax activation to ensure ) P, = 1
and apply instance normalization [Ulyanov et al., 2016] for the feature map be-
fore the softmax activation. We optimize the model for 1,000 iterations using
the Adam optimizer [Kingma and Ba, 2014]. We set 0.01 to the learning rate,
and the other parameters are the same as the default parameters suggested in
[Kingma and Ba, 2014]. The coefficients (A, a, 3) in eq. (3.6) are set to (2,2, 10)
in our experiments, but 3 is zero for the model without the reconstruction cost.
These parameters were roughly selected by an evaluation on the train data, and
the parameters of the baseline methods were also selected in the same way.

In practice, if given only an RGB image as input, CNN groups the indepen-
dent connected components as the same superpixel because CNN is the transla-
tion invariant and assigns the superpixels based on only local spatial patterns.
Therefore, we also give pixel locations X € R7*Wx2 to the model as input,
namely, f : (I,X) — (P,I), to reduce undesired segments. The pixel loca-
tions cannot completely prevent the undesired segments, but practically, they
work well. Therefore, for implementing the (RGB, location)-input (probability,
reconstruction)-output model, we set input channels of CNN to 5 and output
channels of CNN to N + 3. The inputs are normalized for each channel so that

the mean and the variance of each channel of X and I are 0 and 1, respectively.
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Table 3.1: The CNN architecture for superpixel segmentation. H, W,
and N denote image height, image width, and the number of superpixels,

respectively. The kernel size of all convolution layers are set to 3.

Layer name Input Dimension Output Dimension

Convolution HxW x3 H x W x 32
Instance Norm. H xW x 32 H xW x 32
ReL.U activation HxW x 32 H x W x 32

Convolution H x W x 32 HxW x64
Instance Norm. Hx W x 64 Hx W x 64
ReLU activation H xW x 64 Hx W x 64

Convolution Hx W x 64 H x W x 128
Instance Norm. H x W x 128 H x W x 128
ReLU activation  H x W x 128 Hx W x 128

Convolution Hx W x 128 H x W x 256
Instance Norm. H x W x 256 H x W x 256
ReLU activation — H x W x 256 H x W x 256

Convolution HxWx256 HxWx(N+3)
Instance Norm. HxW x N HxW x N

Softmax HxW x N HxW x N
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3.3.3 Baseline Methods

We compare the proposed method to the clustering-based [Achanta et al., 2012],
the energy optimization [Van den Bergh et al., 2012, Yao et al., 2015], and the
graph-based methods [Felzenszwalb and Huttenlocher, 2004] on the Berkeley Seg-
mentation Dataset and Benchmarks (BSDS500) [Arbelaez et al., 2010] and the
Stanford Background Dataset (SBD) [Gould et al., 2009]. The BSDS500 contains
300 train/validation images and 200 test images, and we use 200 test images for
the evaluation in the experiments, and SBD contains 715 images, and we use all
images for the evaluation. We use implementations of OpenCV [Bradski, 2000],
scikit-image [van der Walt et al., 2014], the author’s implementation ! of ETPS
for baseline methods, and PyTorch [Paszke et al., 2019] to implement the pro-
posed method.

3.3.4 Results

3.3.4.1 Adaptive Controlling of the Number of Superpixels

We show the number of superpixels per image with various A values in Figure
3.7. We set N to 500. The model assigns various numbers of superpixels in each
image, and the number of superpixels spreads over a wide range when A is large.
This indicates that our CNN-based method adapts the number of superpixels
depending on the given images. If one desires the superpixels to be as few as
possible, A\ should be set to a small value. However, if one desires to adaptively

control the number of superpixels, A should be set as a large value.

3.3.4.2 Comparison with Baseline Methods

Figure 3.8 shows that the proposed method achieves comparable or better results
compared to other methods in ASA with < 200 superpixels. As we expected, the
proposed methods clearly improve ASA with a small number of superpixels. The
results indicate that the proposed method utilizes the global structure to gener-

ate superpixels. We believe that the CNNs’ prior induces the properties. The

thttps:/ /bitbucket.org/mboben /spixel /src/master/
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Figure 3.7: The number of superpixels per image on the
BSDS500 [Arbelaez et al., 2010] test image set with various A values.
The maximum number of superpixels N is 500. The number of superpixels
converges on a small number when A is small. However, when A is large,
the number of superpixels spreads over a wide range, and the mean number

of superpixels becomes large.
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proposed methods also achieves comparable or better BR, with the small num-
ber of superpixels. Significantly, the proposed method with the reconstruction
dramatically improves BR with < 200 superpixels on the BSDS500. It indicates
that the reconstruction cost refines the segmentation accuracy around the object
boundaries.

We show example results of each method in Figure 3.9. The super-
pixels generated by the proposed methods have a similar flexibility to the
FH method [Felzenszwalb and Huttenlocher, 2004] and compactness similar to
SLIC [Achanta et al., 2012], especially with the reconstruction cost. The pro-
posed method with the reconstruction partially fits the superpixels to the detail
components in the images, such as the vertical tail of the helicopter and the body
paint of the plane. The FH method also seems to fit segments to detail compo-
nents; however, its ASA is lower than other methods, and the fact indicates that
the FH method groups the pixels belonging to different segments in the ground-
truth label. It indicates that the segments generated by the FH method cannot
preserve the semantic information of the input image. Surprisingly, the proposed
method without the reconstruction segments the object components, as shown
in Figure 3.9 (e). The method does not have any handcrafted priors except for
the local smoothness; hence, we believe that the CNNs’ prior effectively works

for the superpixel segmentation.

3.4 Conclusion

In this section, we evaluated the proposed methods and verified the CNNs’ prior
for superpixel segmentation. Our proposed method, the mutual information max-
imization framework, can capture the object components without any priors ex-
cept for the local smoothness. The evidence implies that the CNN has a good
prior for superpixel segmentation. Moreover, combined with the image recon-
struction task, the method improves ASA and BR. As a result, our proposed

method outperforms the existing methods with a small number of superpixels.
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Figure 3.8: Comparison  of proposed method to base-

line methods [Achanta et al., 2012, Van den Bergh et al., 2012,
Felzenszwalb and Huttenlocher, 2004, Yao et al., 2015]. We show achiev-
able segmentation accuracy (ASA) and boundary recall (BR) on the
BSDS500 [Arbelaez et al., 2010] and SBD [Gould et al., 2009] with various
numbers of superpixels. The proposed method w/ recons and w/o recons

determines whether the reconstruction cost is used for optimization or not.
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4

Superpixel-based Image
Segmentation by Superpixel

Convolution

Image segmentation is the fundamental task in the image processing and
computer vision. To capture high-context and global information, many re-
cent proposed methods leverage CNNs [Long et al., 2015, Zhao et al., 2017,
Chen et al., 2017a, Chen et al., 2014, Yu and Koltun, 2015]. Although CNNs are
useful in capturing data, it discards detailed information, such as high frequency
components, object boundaries, and small and/or thin objects, due to the down-
sampling operation. Therefore, generated segments are roughly fit to the object
and backgrounds. Several techniques have been proposed to preserve informa-
tion [Yu and Koltun, 2015, Chen et al., 2014, Li et al., 2020], but they require
extra computational costs or complex procedures. Empirically, dilated convolu-
tion, also known as atrous convolution, can be used to eliminate downsampling
operations from a network, but it causes the computational costs to explode.
Classically, as described in the previous section, superpixels are used to reduce
computational costs. They are a low-dimensional representation of images and
generally given as a set of pixels similar in color and other low-level properties.

Our strategy is to leverage superpixels instead of general downsampling methods,
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such as pooling and convolution with a stride.

[Kwak et al., 2017] proposed the superpixel-based downsampling method, or
superpixel pooling, and they use it for weakly supervised semantic segmentation
and improve the segmentation quality. However, they deal with downsampled
images as the vectors (not as images), because there is no means to process the
superpixel image by the convolution operation.

Therefore, we propose superpizel convolution, which is a convolution opera-
tion designed for images downsampled with superpixels. Because of superpixel
covolution, we can build CNNs replaced fixed-kernel downsampling operations
with a superpixel-based downsampling operator.

In the rest of this chapter, we first introduce graph convolution, which is
closely related to our proposed superpixel convolution, and we describe the dif-
ferences between them. Then, we propose the superpixel convolution and dilated

superpixel convolution and evaluate them.

4.1 Convolutional Neural Networks on Graphs

4.1.1 Adjacency Matrix and Graph Laplacian

Let G = (&,V) be an undirected, weighted graph that consists of a set of edges €
and a set of vertexes V. Each edge ¢;; € € has a weight w;; € R, and each vertex
v; € V has a feature vector f; € RY. Let the number of vertexes |V| be M, and

then we define an adjacency matrix W € RM™*M ag follows:

, (4.1)

W 4 Wil if nodes 7 and j are connected
N 0 otherwise

and a degree matrix is also defined as Dy = >, Wij; D € RM*M Note that the
adjacency matrix is a non-negative symmetric matrix (i.e., w;; = wj; > 0), and
the degree matrix is a diagonal matrix. Then, the unnormalized graph Laplacian

L is defined as follows:
L:=D—-W. (4.2)

We illustrate each matrix in Figure 4.1.
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Figure 4.1: Illustration of the unnormalized graph Laplacian. From left
to right, (a) the graph structure, (b) the degree matrix, (c¢) the adjacency

matrix, and (d) the unnormalized graph Laplacian.

Then, we also define the normalized graph Laplacian L., and the random

work graph Laplacian L., as follows:

Loomm =D 2LD™ 2 =] — D 2WD" 2 (4.3)
Lyw:=D'L=I-D"'W (4.4)

We provide some propositions for the normalized and unnormalized graph

Laplacian in the appendix.

4.1.2 Superpixel Images As Graphs

Let 8§ = {s1,52,...,5k} be a set of superpixels. We regard superpixels as the
graph. A set of vertexes corresponds to a set of superpixels. We introduce the
edge w;; = 1 between superpixels s; and s;, if s; and s; share the their boundaries
or i = j. Therefore, the graph of superpixel images is defined as § = (&, 8), and
its adjacency matrix is as follows:
1 if superpixels 7 and j share their boundaries
Wy=< 1 i=j (4.5)

0 otherwise

The node feature, which means the feature vector of superpixels {s;}, is made

by superpixel pooling, which is described in the next section.
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4.1.3 Superpixel Pooling

Superpixel pooling was originally introduced by [Kwak et al., 2017] is a down-
sampling method that receives an image or an intermediate representation of
CNNs and precomputed superpixels as input and returns the feature vectors
on the superpixels. Therefore, we define the superpixel pooling as a map,
f o REXWXC oy RNXC where H, W, and C denote the input image height,
the width, and the channels, and N denotes the number of superpixels.

The general pooling operations sample the specific value within the predefined
fixed area. In the neural network scenario, max pooling and average pooling,

which are defined as follows, are basically used:

Yi = max T, (4.6)
1
= T iy 4.7
JEN(4)

where N(i) denotes a set of neighbor pixels of the i-th pixel, and y; denotes
the feature vector on the i-th pixel of the output, and x; also denotes the feature
vector on the j-th pixel of the input. In other words, the max and average pooling
sample max value and average value over the neighbor pixel features.

We can easily extend the pooling into the superpixel image domain. We define
the feature vector on the i-th pixel as x; and the feature vector on a i-th superpixel

as f;. Then, we define superpixel max and average pooling as follows:

fi = maxz;, (4.8)
1
' jes;

Our strategy is to describe superpixel images as graphs and to process them
with a convolution operator on graphs. Therefore, in the next section, we first
review graph convolutions, which are defined as convolutions on graphs, and next,
we propose superpizel convolution, which is a graph convolution for superpixel

images.
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4.1.4 Graph Convolution

In this section, we introduce graph convolutions which have recently studied in the
machine learning field. Graph convolutions are roughly classified into a spectral
domain and a spatial domain, and in the following section, we introduce graph

convolutions for each domain.

4.1.4.1 Spectral Domain

To define graph convolution in the spectral domain, we first introduce
graph Fourier transformation. The following derivation is based on
[Bruna et al., 2013], but the graph Fourier transformation was originally intro-
duced by [Hammond et al., 2011].

In the graph signal domain, a natural definition of the local smoothness at

the 7-th node is as follows:
IVl =Y Wiy(fi = f3)*, (4.10)
J

where F' = (f1,..., fi,.-., fu)" € RM*Y denotes the feature vector on the i-th
node. This definition corresponds to the quadratic form of the graph Laplacian
L. Thus, the eigenvector of L corresponds to

v; = arg min IV fill (4.11)

FERN [|fill=1 &l{vayvi1

and the corresponding eigenvalues \; allows the smoothness of a vector f; to be
read off from the coefficients of f; in {vy,...,vp}. Note that M corresponds to
the number of vertexes. As a result, the eigenvalues are regarded as the Fourier
coefficients of a graph following an adjacency matrix W, and the eigenvectors are
also regarded as the Fourier bases. Therefore, the graph Fourier transformations

of the feature vectors on the vertexes are given as follows:
F(F,L):=U"F, (4.12)

where UT denotes the eigenvectors of the graph Laplacian L, U =
(g, ... up); U € RM*M - Since the graph Laplacian is the symmetric semi-

positive definite matrix, U is the orthogonal matrix, and then the inverse trans-
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formation of the graph Fourier transformation is defined as F~1(F,L) := UF =
UUTF =F.

Next, we introduce the spectral domain graph convolution introduced by
[Bruna et al., 2013]. The graph convolution in the spectral domain is defined

as follows:

c
Fo:=UY A U'F,, (4.13)
=1
where F' € RM*C" denotes the output feature vectors, and C’ is the num-
ber of output dimension; Ay, € RM™*M denotes the convolution filter, which
is the diagonal matrix. Note that F.. denotes the c-th column of F. Classi-
cally, the filter parameters are determined by solving an optimization problem
(e.g.[Shuman et al., 2013]) However, [Bruna et al., 2013] proposed a graph con-
volution in a machine learning scenario. Therefore, the filter parameter A is
trained through a gradient descent with backpropagation.

The graph convolution proposed by [Bruna et al., 2013] requires high compu-
tational costs because an eigen decomposition whose computational costs is O(n?)
is needed. Therefore, [Defferrard et al., 2016] proposed a more efficient formula-
tion with Chebyshev expansion. The graph convolution approximated Chebyshev
expansion is traditionally used in graph signal processing [Hammond et al., 2011],
and Defferrard et al. modified it for graph neural networks.

The graph convolution proposed by Defferrard et al. approximates eq. (4.13)

as follows:

C C K
Fo=UY AU Fomd kz Ok Ti(L)F.c, (4.14)
c =1

C

where 0 € REXC"*K {g the trainable parameter, and L= 2L _ ] Notethat Amax

>\rnax

is the largest eigenvalue of L. Ty () denotes Chebyshev polynomials with the k-th

order, which are defined as follows:

Tk(l’) = 21‘Tk_1(l’) — Tk_g(x),
with To(z) =1 and T (x) = z. (4.15)
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4.1 Convolutional Neural Networks on Graphs

This formulation has three advantages: (i) trainable parameters decrease from
C'CN to C'CK, (ii) computational costs also decrease since it does not require
eigen decomposition, and (iii) it is designed as localized convolutional filters,
meaning that the Chebyshev polynomial of order K corresponds to the filter size

of general spatial convolutions.
Empirically, eq. (4.14) is well approximated with K = 2. Moreover,
(4.14) by rep-

resenting the two trainable parameters as a shared parameter and introducing a

[Kipf and Welling, 2016] proposed a simpler formulation of eq.

self-loop into the node. When K = 2, eq. (4.14) is represented as follows:
c 2 ~
DY bewsTu(L)Fo = (Fby).0 — D'?PAD™V2(F)). 0, (4.16)

and Kipf and Welling approximated the trainable parameters 6, € RE*¢" and
0, € RE*“ as § = 6, = —0;. Note that to derive eq. (4.16), Kipf and Welling
approximated Apax & 2. Then, eq. (4.16) is approximated as follows:

F6y— D Y2ADY?F0, ~ (I — D"V2ADY?)F¢. (4.17)

Moreover, they also proposed a reparameterization trick to reduce the risk of a
vanishing gradient: [ + D~Y2AD~Y2 — D-12AD12 with A = I + A and
Dii => ; /LJ This reparameterization indicates the self-loop for each node. As

a result, Kipf and Welling’s formula for a graph convolution is as follows:

F=D:AD 3F4. (4.18)

4.1.4.2 Spatial Domain

[Bruna et al., 2013] also proposed graph convolutions in a spatial domain. We
first review the convolution for image data and then introduce the spatial domain
graph convolution introduced by [Bruna et al., 2013].

A spatial convolution in an image domain is defined as follows:

c Lk/2]

xh w,e T E E Wsy,5z,c! ,c¢ X h+-6y,wdz,c) (419)

¢ by,0r=—|k/2|
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where w denotes filter parameters, and k denotes the filter size; [-] is a floor
function. Note that, to be exact, eq. (4.19) is called a “cross correlation,” but in
the machine learning community, eq. (4.19) is called a “convolution.” Therefore,
we also call eq. (4.19) a convolution in this thesis.

We regard a spatial convolution as an aggregation of the neighbor pixel fea-
tures and extend it to a graph convolution in the spatial domain. Let N(i) be the
neighbor pixels of the i-th pixel and x; be the feature vectors of the j-th pixel.
Then, a graph convolution in a spatial domain is defined as follows:

Bi= ) Wiy, (4.20)
JEN(E)
where W denotes the adjacency matrix, but [Bruna et al., 2013] regard it as train-
able parameters. Note that although W is the trainable parameters, the graph
structure is known, meaning that Wj; is set to 0 if no edge exists between the
i-th node and the j-th node.

4.1.4.3 Convolutions in Image Domains as Graph Convolutions

When we consider pixels as graph vertexes and introduce the edges between
neighbor pixels, the image is also regarded as a graph. Therefore, if we design
the adjacency matrix with local connectivity between the pixels, we can describe

a spatial convolution using the adjacency matrix as follows:
c
Xo=> Wo.X., (4.21)

where X € RYM denotes the feature vectors on the pixels, and {Wy,. €
RM>M1 , . denotes the trainable adjacency matrix. Note that the adjacency ma-
trix includes a self-loop.

Unlike a graph convolution in a spatial domain, W;; is the matrix similar to

the circulant matrix. The circulant matrix is defined as follows:

¢t G -+ CM-1 CMm
Cmvm €1 -+ Cpm—2 CpM-1
c=1: + - : : ) (4.22)
C3 Cq4 +-- C1 Co
Cy C3 - CMmr C1
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Figure 4.2: Illustration of the unrolled convolution defined in eq. (4.21).
The left figure denotes a convolution between a filter w and an input x.
The right figure denotes an unrolled convolution. The figure is taken from

[Hoogeboom et al., 2019].

Therefore, a spatial convolution with a circulant matrix has only M parameters,
{c1,¢9,...,car}. We illustrate the unrolled convolution defined in eq. (4.21) in
Figure 4.2.

Moreover, because of the sparsity of the adjacency matrix, the trainable pa-
rameters per channel are less than M, which is much less than the graph convo-
lution in the spatial domain. We believe that superpixel images also have these
properties. Thus, we leverages the properties to efficiently process superpixel

images with a graph convolution.

4.2 Superpixel Convolution

We propose generalized frameworks of convolution and dilate convolu-
tion [Yu and Koltun, 2015] in the image domain, as shown in Figure 4.3.
Let W € {0, 1}*M e the adjacency matrix defined as eq. (4.5) and {Cy . €

RM>M1 , be the circulant matrix whose parameters are trainable. We define the
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graph convolution for superpixel images as follows:

Fo=)Y (CocoWH)F,, (4.23)
where o denotes the Hadamard or element-wise product. Note that we compute
WX in Boolean algebra; that is the K-th power of W is calculated with logical
or and logical and. Then, K corresponds to the kernel size because the elements
of the K-th power of the adjacency matrix indicate the number of paths from
the i-th node to the j-th node with a path length of K. Moreover, since W
has a self-loop, if the path length between the i-th node and the j-th node is
less than K, W # 0. Because we compute W in Boolean algebra, W represents
whether the path length is less than K. We call eq. (4.23) superpizel convolution.
Note that if F' is the image, the superpixel convolution corresponds to the spatial
convolution.

The trainable parameters of the superpixel convolution are {C, ., € RM*M}
and each of them has only M parameters since we define it as the circulant matrix.
It is reasonable to define the trainable parameter as the circulant matrix because
the superpixel images are more spatially structured compared to general graphs.
Therefore, the superpixel convolution is more similar to the spatial convolution
than the graph convolution in a spatial domain.

The trainable parameter Cv . can be trained by the gradient method through
backpropagation. Let L be the predefined objective function, and then the gra-

dients of parameters are given as follows:

OL oL
=WEF, .——, 4.24
@chc,z‘,j B a i, ( )
oL oL
= § Cypii o WEY ——, 4.25
8F’j,c - ( G20 © z,j) aF@c/ ( )

C

where W/ denotes the (,) element of the matrix WX,
4.2.1 Dilated Superpixel Convolution

The dilated convolution proposed by [Yu and Koltun, 2015] is widely used for

several image recognition tasks, such as image segmentation [Zhao et al., 2017,
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4.2 Superpixel Convolution

Chen et al., 2017b] and aims to effectively expand the receptive field. The dilated

convolution is defined as follows:

c Lk/2]

Te = E g Wsy,sz,c' L h+ddy,w+ddz,c (426>

where d € N denotes a dilation parameter. When d = 1, the dilated convolution
corresponds to the standard spatial convolution.

We propose the dilated convolution for superpixel images, or dilated superpizel
convolution, as aggregation of K-hop nodes. The dilated superpixel convolution

is defined as follows:

Frdote .=y <(J o W<K>) F., (4.27)

[

WU = 1 Wk Wkt (4.28)

where W has 1, if the path length from the ¢-th node to the j-th node is K
or ¢ = j, otherwise 0. The aim of the dilated superpixel convolution is also to
expand the receptive field with sparse connections.

The trainable parameters can also be trained by the gradient descent, and

their gradients are given as follows:

OL .. OL
N P 4.29
OC¢ i, YR (4:29)

oL oy 0L
=3 (Coess W»-> 9 4.30
8E7C / ( ,Cy2,] e} 2,7 aFidgate ( )

4.2.2 Weight Decomposition for Efficient Parameteriza-
tion

The kernel size of convolution layers in general CNNs is generally 3 x 3, and the
number of their parameters is 9C'C’. The number of superpixels is usually between
100 and 10,000, and the number of parameters in the superpixel convolution is
up to 10000CC". Therefore, the superpixel convolution may be infeasible when

the number of superpixels is large.
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We propose a decomposed superpixel convolution to prevent an explosion in
the number of parameters. We parameterize the weight matrix Cw . with the

bases B € RPXMXM and the coefficient T € RE*C" %P as follows:
P
Coe= TucpBy (4.31)
p

Only the bases depend on the number of superpixels, and if the number of bases
P is small, the number of trainable parameters is tractable. Note that B is also

the circulant matrix; hence, the number of trainable parameters is only P x M.

4.3 Evaluation

The goal of the evaluation is to verify that superpixels potentially improve the
CNNs’ performance for segmentation tasks. Thus, we compare the general CNN
and the CNN using our proposed superpixel convolution instead of the general
convolution operations. We use HKU-IS [Li and Yu, 2015], which is a dataset for
two class segmentation. It contains 2,500 training data, 500 validation data, and
1447 test data.

4.3.1 Metrics

We use BR as defined in (3.11), mean absolute error (MAE), and F-scores as the

evaluation metrics. MAE and F-scores are defined as:

MAFE = L Z Z |ph,w - gh7w|> (432)
h w

HxW

(1+ B%)Precision x Recall

Fs =
A B2 Precision + Recall

(4.33)

where p € {0, 1}>W and g € {0, 1} denote the prediction and the ground

truth, respectively. Precision and Recall are defined as:

TP

recision = o (4.34)
TP

Recall TP N (4.35)
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4.3 Evaluation

where TP, FP,and FFN denote the number of true positive, false positive, and
false negative pixels. As suggested by previous works, we set 5% to 0.3 to empha-

size the importance of the precision value.

4.3.2 Implementation Details

To show the effectiveness of our superpixel convolution, we compare it to a general
CNN. All the models in the experiment have the same architecture (Table 4.1).
Superpixels are calculated by SLIC [Achanta et al., 2012]. We optimize models
using the Adam optimizer [Kingma and Ba, 2014] with the following binary cross
entropy loss for 30 epochs.

Lpop(m,t) wlog(mpy ) + (1 — ghw) log(l — mp.)),

(4.36)

where m € (0,1)7*" denotes the raw output of the model. We set the hy-
perparameters for the Adam optimizer to the default parameters suggested in
[Kingma and Ba, 2014]. We evaluate models every epoch on validation data and

use the best model for comparison.

4.3.3 Results

We compare the superpixel convolution (referred as SC or SConv) and the di-
lated superpixel convolution (referred as DSC). The DSC model has the same
parameter as the model in Table 4.1, and the SC model replaces all dilated su-
perpixel convolutions with a superpixel convolution with a kernel size of k = 1.
We show the results in Table 4.2. Note that no decomp indicates the superpixel
convolution without the weight decomposition defined in eq. (4.31).

In SC, the scores improve in proportion to the increase in parameters p. In-
terestingly, DSC has an inverse property. We assume that this may be due to the
effect of regularization by p. Note that a large number of parameters seem to be

unnecessary when aggregating a wide range of pixels.
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Table 4.1:

parameters in parentheses indicate baseline CNN parameters.

Model architectures for the foreground segmentation.

The

SConv in-

dicates a superpixel convolution, and DSConv indicates a dilated super-

pixel convolution.

Kernel size indicates height x width of the convo-

lution kernels, and output size indicates channels x height x width of

the output map. All the blocks have shortcut connections, the same as

ResNet [He et al., 2016a, He et al., 2016b].

Modules

Kernel size

Output size

‘ Modules

Kernel size

Output size

Convl_{1,2}
Conv
ReLU
Conv2
Conv
ReLU
Max Pooling
Blockl_{1,2,3}
Conv
Tanh
SConv
Tanh
Conv
Tanh
Block2_{1,2,3}
Conv
Tanh
DSConv
Tanh
Conv

Tanh

3Ix3

3Ix3

256 region (16x16)

1x1

1 (3x3)

1x1

1x1

2 (3x3, dilate 2)

1x1

64x256 %256
64x256 %256

32x256x256
32x256x256
32x256 (32x16x16)

8x256 (8x16x16)
8x256 (8x16x16)
8x256 (8x16x16)
8x256 (8x16x16)
32x256 (32x16x16)
32x256 (32x16x16)

16x256
16x256
16256
16x256
64x256
64x256

16x16x16)
16x16x16)
16x16x16)
16x16x16)
64x16x16)
64x16x16)

o~ o~ o~~~ —

Block3_{1,2,3}
Conv 1x1

Tanh

DSConv

Tanh

4 (3x3, dilate 4)
Conv 1x1
Tanh
Conv3
Conv 1x1
ReLU
Up-Sampling
Concatenation
Conv4
Conv 1x1
ReLU
Convbh
Conv 1x1

Sigmoid

(with Conv2 output)

32x256
32x256
32x256
32x256
128 x256
128 x256

32x16x16
32x16x16
32x16x16
32x16x16
128x16%16)
128x16%16)

)
)
)
)

~ o~ o~~~

32x256 (32x16x16)

32x256 (32x16x16)
32x256x256
64x256x256

64x256x256
64x256x256

1x256x256
1x256x256
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4.3 Evaluation

Table 4.2: Comparison between SC and DSC.

Model P | BR MAE Fgs-Score
SC no decomp | - | 0.255 0.143 0.744
3 10.266 0.141 0.728
SC 9 10290 0.140  0.730
181 0.279 0.140  0.733
DSC no decomp | - | 0.322 0.118 0.794
310362 0.118  0.797
DSC 9 10.362 0.121 0.784
18 1 0.356 0.123  0.783

Table 4.3: Comparison between SC and CNNss.

Model BR MAE Fg-Score
CNN 0.201 0.140 0.719
Dilated CNN | 0.270 0.125  0.775
SC(p=9) 0290 0.140  0.730
DSC (p=9) | 0.362 0.121  0.784

4.3.4 Comparison of SC and CNNs

We compare our SC model and baseline CNNs. We use two models as baseline

models; one is a model defined in Table 4.1, and the other is a model replacing

the convolution layers with dilated convolution layers. We show the results and

the precision-recall curve in Table 4.3 and Figure 4.4, respectively. The results
show that both our SC and DSC models outperform the baseline models. In
particular, our SC and DSC achieve better BR than the baseline models. This

fact indicates that our model can preserve detailed information, namely, object

boundaries.

Finally, we show example results in Figure 4.5. The SC and DSC improve

the accuracy of object boundaries and the small objects compared to the baseline
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methods. However, the performance of the proposed method depends on the
superpixel quality. In this experiment, we utilize SLIC to generate the superpixels
utilizing color similarity. Therefore, it is difficult to distinguish between the
foreground and background which have the same color, as shown in Figure 4.6.

Thus, better superpixel algorithms or end-to-end frameworks are needed.

4.4 Conclusion

In this section, we evaluated the superpixel convolution and dilated superpixel
convolution on a foreground segmentation task. The proposed method outper-
forms baseline CNNs, especially in terms of the BR score, because the superpixels
preserve the boundary information. The fact implies the use of superpixels may

improve CNNs’ performance for segmentation tasks.
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4.4 Conclusion

5

Convolution Dilated Convolution

Dilated
Superpixel Convolution Superpixel Convolution

Figure 4.3: Illustration of convolution, dilated convolution, our proposed
superpixel convolution, and dilated superpixel convolution. Because the ar-
rangement of superpixels is irregular, the aggregated elements depend on the

position.
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Figure 4.4: Precision-recall curve.
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Figure 4.6: Example results of failure cases. SLIC [Achanta et al., 2012]
groups the pixels that are similar in color and pixel position. Thus, SLIC
cannot separate background and foreground pixels (e.g., the left elephant

and the tree, the boat and river).
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Integrating Superpixel
Segmentation into Fully

Convolutional Networks

In image segmentation with CNNs, the downsampling layer causes the loss of
detailed information, such as high frequency components, object boundaries, and
small and/or thin objects. Therefore, the trainable decoder and dilated convo-
lution were proposed to solve it. However, these techniques cause an increase in
the trainable parameters and/or the computational costs.

In this chapter, we introduce superpixel segmentation scheme into
FCNs [Long et al., 2015] to mitigate the information loss. We show the overview
of our proposed method in Figure 5.1. Our approach views the general down-
sampling as superpixel-based downsampling and groups the pixels by utilizing
sampled pixels as superpixel seeds. The coarse prediction map is decoded to a
fine resolution based on the generated superpixels.

By integrating our proposed method into downsampling layers, the model hi-
erarchically generates superpixels and predicts the target values for superpixels.
The proposed method does not change the feed-forward path of a base archi-
tecture because superpixels are not used in the feed-forward path, but they are

only used for recovering the lost resolution instead of bilinear interpolation. Be-
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Figure 5.1: [Illustration of proposed hierarchical clustering for FCN-
32s [Long et al., 2015]. The proposed method groups the pixels in down-
sampling layers and forms a set of pixels as an assignment matrix. The
model predicts the target values for a set of pixels. Unlike existing methods
combining superpixel segmentation and neural networks [Kwak et al., 2017,
Suzuki et al., 2018, Yang et al., 2020], the proposed method does not use su-
perpixels for downsampling, explicitly. Therefore, the proposed method can
be plugged into existing architectures without a change in their feed-forward
paths. Superpixels are only used to recover the resolution using eq. (5.3)

instead of bilinear interpolation.
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cause the superpixels preserve the detailed information, the model mitigates the

information loss.

5.1 Preliminaries

Let I € R¥"W>3 he an RGB image where H and W denote the image height
and width and IEES) € RY be a N-dimension feature vector of an i-th pixel
in the feature map, where s denotes an output stride; namely, the resolution
of £®) is (H/s,W/s). FCNs consist of the blocks built on convolution layers
and ReLU [Krizhevsky et al., 2012] activation and downsampling layers, such as
max-pooling and convolution layers with a stride of two or more. Let ¢(® and
d® RN R%VXM, s < s be the convolution and ReLU blocks and a
downsampling layer that reduces the spatial resolution. For simplicity, we define
the downsampling layer as the operation reducing the resolution in half, from
(%, %) to (%, %), without loss of generality, and we describe the downsampling
layer as just d(-) in the rest of this chapter. Note that the feature dimension of the
downsampled feature map may change when using the strided convolution as the
downsampling. Then, as shown in Figure 5.1, the prediction map generated by
FCN-32s [Long et al., 2015] is defined as y©? = ¢og®? odo---0g® odogM(I),
where ¢(-) maps the input feature maps into target values. The proposed method

does not change the feed-forward path, namely, the map from I to y?).

5.2 Clustering and Upsampling Procedure

Our strategy is to group pixels at downsampling layers, predict the target val-
ues for clusters, and share the predicted value with pixels belonging to the cor-
responding cluster. The j-th cluster at the output stride of s is defined as
cg»s) = {Z'Wk,S(W(S)mgs),w(zs)s?)) > $(W®z W) where 35»28) de-
notes the j-th pixel of the downsampled feature map, s?9 = d(z()), and §
denotes a similarity function that is defined as the cosine similarity in our ex-

periments. W e REXN and W) ¢ REXM are learnable weight matrices for
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2® € R'2 N and s ¢ R%XM, which maps the feature vectors into a K-
dimension space. K is set to 64 for our experiments. This clustering process is
executed in downsampling layers and generates the set of pixels in each resolution,
{c®}.

Although the cluster to which an i-th pixel belongs can be obtained by
arg maxy S(W(S)mgs),w(%)sgs)), it is non-differentiable. Therefore, to train the
model in an end-to-end manner, we relax it by using the temperature softmax
function. We first formulate hard clustering and next describe its relaxed version.

The hard clustering problem is defined as follows:

A®* .= argmax ZAE;)S(S) s.t., ZAS) =1, (5.1)
J

ij
A e{0,1}UxV 5

where A®* € {0,1}V*V and S € RY*Y denote an assignment matrix and a

non-negative similarity matrix that is defined as ng-) = S(W(S)mgs), W(Qs)sggs)). U

Hw 2s)
452 Y

respectively. We illustrate the maximization problem in Fig. 5.2 and obtained

and V denote the number of pixels in ), ie., U = Ii—ZW and V = and s
superpixels in Fig. 5.3.
Then, we can decode the downsampled feature map to the fine resolution

feature map based on the clusters as follows:
28 = A2 (5.2)

The model predicts target values from the coarsest feature map, y©? = ¢(x®?)),
and then the coarsest prediction can be decoded to the original resolution by

recursively decoding y©®? as follows:

y = J[ Ay (5.3)

s'={16,8,4,2,1}

Note that we plug the clustering modules into a part of all the downsampling
layers in our experiments. Therefore, we decode the prediction with the bilin-
ear upsampling to the original resolution after decoding it to the plausible fine
resolution using eq. (5.3).

Unfortunately, the clustering procedure is mnon-differentiable because of

8)*

argmax in eq. (5.1). Thus, we relax the assignment matrix A®)* to a soft
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Figure 5.2: Illustration of the clustering procedure represented in eq. (5.1).
Given the feature maps before and after downsampling, we first compute
the inner product between each pixel in the feature maps and the trainable
weight matrix. Then, we compute the similarity matrix with the cosine simi-
larity between the pixels in the feature maps before and after downsampling.
Finally, we compute the assignment matrix A)* where AZ(;)* = 1 if the j-th
pixel in the downsampled feature map has maximum similarity for the ¢-th

pixel in the feature map before downsampling, and 0 otherwise.
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Figure 5.3: [Illustration of the computed cluster, i.e., superpixels. We
visualize a set of pixels and their corresponding cluster seeds in the same

color.

assignment matrix A®) € (0,1)V*V. We define the soft assignment from wgs) to
the sampled cluster seed S§~28) as follows:

. exp (S <W(S)wgs), V~V(28)s§-28)> /T)

AY - 6.4)

N > exp (S (W(s)mgs), W(Qs)sgfs)) /7’) 7

where 7 is a temperature parameter. If 7 — 0, A®is equal to A®)*. We set 7 to
0.07 for our experiments. The dense prediction map is generated using eq. (5.3)
and A® instead of A®* When calculating the loss between the ground truth
labels and the prediction map generated using eq. (5.3) with A®), the loss is fully
backpropable, and the model can be trained in an end-to-end manner.

We visualize hierarchical clustering in Figure 5.4. The clusters
are generated by the FCN-32s with our proposed method trained on

Cityscapes [Cordts et al., 2016]. The pixels are hierarchically grouped, and the

HW
322

and the small and/or thin objects, such as signs and poles.

model forms clusters in the end. The clusters preserve the object boundaries

5.3 Practical Issues and Their Solutions

The soft assignment matrix is not computationally applicable; for example,
when the resolution of an input image is 512 x 512 and downsampled to
256 x 256, the soft assignment matrix requires 64GByte in the single-precision
floating-point number. Therefore, we restrict the number of candidate clus-

ters to only nine surrounding clusters, as shown in Figure 5.5, and bring
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Figure 5.4: An example result of hierarchical clustering. From top to

bottom, ¢, ¢®, ¢® 16 We visualize cluster boundaries as yellow lines.
These clusters are generated by FCN-32s with the ResNet-101 backbone
combined with our proposed method. Note that we visualize the cluster
boundaries; hence, the pixels may be assigned in the same cluster even if

they are separated by the yellow line.

69



5. INTEGRATING SUPERPIXEL SEGMENTATION INTO FULLY
CONVOLUTIONAL NETWORKS

Figure 5.5: Illustration of the candidate clusters. Grid is defined as a stride,
meaning that if a stride is two, then each cell has 2 x 2 pixels. Circles indicate
the cluster seeds sampled from corresponding regions. The candidate clusters
to which pixels in the orange cell belong are defined as the orange circle and

eight neighbors.

HW HwW

down the size of A® from 2 X HW

to 5 x 9 elements. The simi-

lar or same technique is also used in existing superpixel segmentation meth-

ods [Achanta et al., 2012, Jampani et al., 2018, Yang et al., 2020].

The flexibility of the downsampling operation is important for the clus-
tering since the downsampled pixels are used as the cluster seeds. However,
static downsampling operations, such as max-pooling and strided convolution,
may not sample effective seeds for clustering because they simply sample pixels
from a fixed region. Therefore, we use the modulated deformable convolution
(DCNv2) [Zhu et al., 2019] with a stride of two as the downsampling operation,
which can adaptively change kernel shapes and weights by the learnable offsets
and modulation parameter generator. We verify the effectiveness of DCNv2 for

our proposed method in the next section.
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5.4 Evaluation

We first evaluate the hierarchical clustering module proposed in Chapter 5 on the
dense prediction tasks, such as semantic segmentation, superpixel segmentation,
and monocular depth estimation.

For semantic segmentation, we first evaluate the proposed method with a
Cityscapes [Cordts et al., 2016] validation set with various settings as an ablation
study and then integrate the proposed method into modern architectures and
evaluate them in terms of semantic segmentation, superpixel segmentation, and
depth estimation tasks. For a fair comparison, we reproduced all the baseline
models in PyTorch [Paszke et al., 2019]. We use “HC” as a prefix to indicate the
model using the proposed clustering module. Moreover, we use OS to denote the
output stride, meaning that the ratio of the spatial resolution of the input image

to the resolution of the prediction map.

5.4.1 Ablation study

In this ablation study, we validate the efficacy and efficiency of our pro-
posed method. We use FCN-32s [Long et al., 2015] with the ResNet back-
bone [He et al., 2016a] as a base architecture. We train the models with fine
training data in Cityscapes to minimize the cross-entropy loss. We set the ini-

tial learning rate to 0.01 and decay it with a “poly” learning rate policy where

iter

—ter )09 We employ momentum

the initial learning rate is multiplied by (1 —
SGD as an optimizer and set the momentum to 0.9. We train the models for
50K iterations with a batch size of 16. We use random crop with a crop size
of 1024x1024, random resize between 0.5 and 2.0, and random horizontal flip
as the data augmentation. Moreover, we use the same auxiliary loss as PSP-
Net [Zhao et al., 2017].

We first evaluate the soft clustering module with various sampling branches.
Our module utilizes downsampled feature maps, but the downsampling opera-
tions in ResNet are embedded into the building blocks, and we have some choices
for obtaining the downsampled feature maps. The building blocks, including

downsampling, are defined as B(x) = I(x) + R(x), where I(-) denotes a linear
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projection called identity mapping and R(-) denotes residual mapping. We com-
pare I(x), R(x), and B(x) as downsampling branches. We show the results in
Table 5.1. Note that the soft clustering modules are plugged into conv4_x and
convb x in ResNet [He et al., 2016a]. The feature map obtained from identity
mapping is slightly worse than the others. The residual mapping and the block
are superior or inferior depending on the architecture, but the difference between
them is less than when comparing them to the identity mapping. We use the
block as the sampling branch in the remainder of the experiment.

We next evaluate the mloU for the proposed method with various hierar-
chical levels. We increase the number of the proposed modules from convb_x
to conv2 x in the backbone ResNet of the FCN-32s and report their mloU. We
show the results in Figure 5.6. AtrousFCN is a model replacing the striding of
conv4_x and convb_x in the backbone of FCN-32s with atrous convolution. Sim-
ilar to ours, AtrousFCN preserves the detailed information without a change in
the feed-forward path. Our proposed method with one or two clustering modules
outperforms AtrousFCN and further improves the mloU by increasing the hierar-
chical level. Moreover, the proposed method with ResNet-18 shows higher mIoU
than AtrousFCN with ResNet-50 when the hierarchical level is two or more.

We then show frames per second (fps) in Figure 5.7. Our proposed method
is two times or more faster than AtrousFCN. Moreover, the proposed method
with the hierarchical level of two demonstrates higher mIoU than AtrousFCN,
sacrificing only 10% fps compared with FCN-32s. The proposed method with
ResNet-18 significantly decreases fps when the hierarchical level is four because
the model wastes the inference time for the clustering in the fine resolution feature
map.

In our experiments, we use DCNv2 [Zhu et al., 2019] as a downsampling op-
eration because we consider that the flexibility of the downsampling operation is
important to sample the effective cluster centers, as described in Chapter 5. To
verify it, we finally compare the strided convolution originally used in ResNet with
DCNv2 with a stride of two. For FCN-32s, we replace the strided convolutions
except for convl in ResNet with DCNv2 with a stride of two.

The results is shown in Figure 5.8. For FCN-32s with a ResNet-18 backbone,

DCNvV2 significantly improves the mloU compared with the strided convolution,
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Table 5.1: Results on various downsampling branches.

sampling branch | backbone | mloU
identity ResNet-18 | 71.21
ResNet-50 | 72.26

residual ResNet-18 | 72.43
ResNet-50 | 73.20

block ResNet-18 | 72.70
ResNet-50 | 72.93

744
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Ours(ResNet-18)
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2
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3 4

Figure 5.6: The mloU for various hierarchical levels for ResNet-18

and ResNet-50 as the backbone.

The model

corresponds to the FCN-

32 [Long et al., 2015] when the level is zero. Our proposed method with

a level of two outperforms AtrousFCN for both backbones.
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Figure 5.7: Inference speed for various hierarchical levels for ResNet-18
and ResNet-50 as the backbone. We report average fps over 100 trials for

a 1024 x2048 input. Our proposed method is two times or more faster than
AtrousFCN.

but for ResNet-50, DCNv2 slightly decreases the mloU compared to the strided
convolution. For the proposed method, DCNv2 stably improves the mloU. Al-
though DCNv2 is better than the strided convolution, the proposed method with
the strided convolution outperforms AtrousFCN when the hierarchical level is two
or more. AtrousFCN shows 70.90 and 72.06 mIoU on ResNet-18 and ResNet-50,
respectively, and the proposed method using the strided convolution shows 71.17
and 72.37 mloU on ResNet-18 and ResNet-50, respectively, when the level is
two. Thus, DCNv2 is a better choice for the proposed method, but the strided

convolution also works effectively.

5.4.2 Semantic Segmentation

We  compare  modern  architectures, FCN-32 [Long et al., 2015],
FCN  with  atrous  convolution  (AtrousFCN) [Chen et al., 2014,
Yu and Koltun, 2015], FPN [Lin et al., 2017], PSPNet [Zhao et al., 2017],
and DeepLabv3 [Chen et al., 2017b], to the models adopting soft clustering
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Figure 5.8: Comparison of the strided convolution (SConv) and DCNv2
as the downsampling layer. The hierarchical level of zero corresponds to the

FCN-32s [Long et al., 2015].

on the Cityscapes [Cordts et al., 2016] test set. The FCN-32s is the simplest
model for dense prediction, and AtrousFCN is a detail-preserving model. FPN
is an asymmetric encoder-decoder model proposed for object detection, but
it has also been used for a panoptic segmentation task [Kirillov et al., 2019a].
PSPNet and DeepLabv3 are AtrousFCN combined with the spatial pyramid
pooling. The training protocol is the same as the ablation study. We use
ResNet-101 [He et al., 2016a] for the backbone architecture. The “HC” models
use the clustering modules for conv4 x and conv5_x in ResNet-101.

We show the mIoU in Table 5.2 and the example results in Figure 5.9. Note
that we evaluate the models with a multi-scale input and use the average results
following [Zhao et al., 2017]. HCFCN-32s shows better mloU than the FCN-
32. Particularly, HCFCN-32s improves mloU for thin and small objects (e.g.,
poles, traffic lights, and signs) that are often missed in the models that generate
low-resolution maps. In fact, HCFCN-32s predicts such objects better than the
FCN-32, as shown in Figure 5.9. Our proposed method also improves the mloU
for FPN, namely, the encoder-decoder model. The HCFPN also enhances 1%-2%
of the mloU for small objects from FPN.
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However, HCPSPNet and HCDeepLabv3 show slightly lower mloU than their
original models. HCPSPNet and HCDeepLabv3 result in a significant drop in
the mIoU for small and/or thin objects such as poles and signs. We consider
that the pyramid pooling module in PSPNet and DeepLabv3 impairs the detailed
information for HCPSPNet and HCDeepLabv3 because their mIoU value for small
objects is lower than the HCFCN-32. The pyramid pooling modules are useful
in capturing global information and enhancing mloU for large objects. In fact,
PSPNet and DeepLabv3 significantly improve mloU for large objects compared
with AtrousFCN. HCPSPNet and HCDeepLabv3 also significantly improve mloU
for the large objects but degrade about 1% of the mIoU for small objects compared
with the HCFCN-32. Thus, the global context aggregation for low-resolution
feature maps may impair the local context.

AtrousFCN shows slightly higher the mIoU than the HCFCN-32, although
HCFCN-32s is better when the backbone is ResNet-18 and ResNet-50. This fact
may imply that our proposed method stably works, regardless of model size, but
AtrousFCN with a shallow backbone is trapped in worse local minima.

We show the accuracy and inference time in Table 5.3. We report the average
time over 100 trials on the NVIDIA Quadro RTX8000 GPU with a 1024 x2048
input and mlIoU on the validation set. Our proposed method significantly reduces
latency for PSPNet and DeepLabv3 and improves the mloU for the FPN and
FCN-32s with a small increase in the inference time.

We also evaluate our proposed method using ADE20K [Zhou et al., 2016].
ADE20K contains a broader range of scene and object categories than Cityscapes.
We train the models for 125k iterations with the same protocol as the ablation
study except that we set the initial learning rate to 0.02. As shown in Ta-
ble 5.4, HCPSPNet and HCDeepLabv3 show comparable results to PSPNet and
DeepLabv3, but the proposed methods are significantly faster.

5.4.3 Superpixel Segmentation

We evaluate soft clustering for superpixel segmentation on the
BSDS500 [Arbelaez et al., 2010] test set. The BSDS500 contains 200 training

images, 100 validation images, and 200 test images, and we use the training set
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Table 5.3: Accuracy and inference times of various architectures for a
1024 x2048 input on the Cityscapes validation set. The inference time is

the average time over 100 trials. We evaluate the models with a single-scale

input.
Method mloU Pixel acc. | msec/image
FCN-32s 1.7 94.9 717
AtrousFCN 76.3 96.0 296.7
HCFCN-32s 76.0 96.1 85.9
FPN 75.1 95.8 82.0
HCFPN 7.2 96.2 92.9
PSPNet 7T 96.2 298.7
HCPSPNet 77.6 96.2 87.0
DeepLabv3 78.4 96.3 380.8
HCDeepLabv3 | 77.4 96.2 93.2

for training. We employ the SSN [Jampani et al., 2018] as a baseline method
that is a supervised superpixel segmentation method that consists of an original
shallow encoder-decoder model. We introduce soft clustering into the SSN and
replace bilinear upsampling operations with Eq. (5.3).

We evaluate these models using ASA and BR. ASA quantifies the achiev-
able accuracy for given segmentation labels using superpixels as a pre-
processing step and BR assesses boundary adherence given ground truth la-
bels [Stutz et al., 2018].

We set the initial learning rate to He-5 and decay it with a cosine learning
rate policy to 5e-7. We employ the Adam optimizer [Kingma and Ba, 2014] as
an optimizer and train models for 300K iterations with a batch size of 8. We
use random crop with a crop size of 208x208 and random horizontal flip as
the data augmentation. The pixel feature dimension is set to 20. The number of
superpixels and differentiable SLIC iterations are set to 169 and 5 during training,

respectively. For testing, we set the iterations to 10.
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Table 5.4: Results on the ADE20K validation set. The inference time is
the average time over 100 trials on the NVIDIA Quadro RTX8000 with a
512x512 input. We use ResNet-101 as the backbone architecture.

Models mloU Pixel Acc. | msec/image
PSPNet 42.53 80.91 48.74
HCPSPNet | 42.56 80.85 18.83
DeepLabv3 42.70 81.04 62.51
HCDeepLabv3 | 42.71 81.07 20.49

We show ASA and BR in Figures 5.10 and 5.11 and the example results in
Figure 5.12. The hierarchical soft clustering improves both ASA and BR, and
as shown in Figure 5.12, we can observe that the HCSSN reduces the underseg-

mentation error, which is a metric resembling (1 — ASA) [Stutz et al., 2018].

5.4.4 Monocular Depth Estimation

Our proposed method imposes local smoothness because of the clustering-based
upsampling procedure, which may hurt the accuracy of the regression tasks.
Therefore, we also evaluate the proposed method for monocular depth estimation
using NYU Depth v2 [Silberman et al., 2012].

As a baseline method, we wuse the deep ordinal regression network
(DORN) [Fu et al., 2018], which consists of a dense feature extractor and a scene
understanding module. We compare DORN to a model that replaces the atrous
convolution in the dense feature extractor with striding and that uses our soft
clustering. Note that our model decodes a feature map generated by the scene
understanding module with Eq. (5.3), although the segmentation models decode
the prediction map.

We train and evaluate the models with the same protocol as [Fu et al., 2018].
We report the average inference time over 100 trials on the NVIDIA Quadro
RTX8000 with a 257x353 input.

We show the comparison results in Table 5.5. Our soft clustering also produces
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Figure 5.12: Example results of the HCSSN (left) and the SSN (right). Red
regions denote the undersegmentation error [Stutz et al., 2018] that mea-
sures the “leakage” of superpixels with respect to ground truth labels. Thus,

the images with fewer red areas are better.
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Model ‘ 0 9o 3 ‘ rel log,, rms ‘ msec/image
DORN [Fu et al., 2018] | 0.83 0.97 0.99 | 0.12 0.05 0.51 39.1
HCDORN 0.84 097 099 ]0.11 0.05 0.50 20.3

Table 5.5: Results on NYU Depth v2 [Silberman et al., 2012]. HCDORN

shows the same accuracies with fewer computational time than DORN.

a speedup without impairing the accuracy of the monocular depth estimation.

5.5 Conclusion

We proposed a superpixel segmentation scheme integrated into FCNs. The pro-
posed method mitigates information loss due to downsampling layers by preserv-
ing detailed information in the form of superpixels and using them to upsampling
images. As a result, we improve the segmentation accuracy of the FCN-32 archi-
tectures and the inference speed of the AtrousFCN architectures without accuracy
degradation. Moreover, we verify that the proposed method also works well on

depth estimations, namely, regression tasks.
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6

Conclusion

6.1 Thesis Summary

Image segmentation forms the foundation for image-based systems, such as au-
tonomous driving, advanced driver-assistance, and surveillance systems. CNNs
have brought great progress in the image processing and computer vision fields.
Then, many CNN-based segmentation methods have been proposed and have
demonstrated attractive performances. However, CNNs often miss detailed in-
formation, such as high-frequency components and object boundaries, due to the
downsampling operations. Therefore, some techniques have been introduced to
CNNs: the trainable decoder is used to recover the lost spatial resolution, and
the atrous convolution is used instead of the stride of downsampling. These tech-
niques are useful, but they do not directly tackle the problem of downsampling
operations.

In this thesis, we first proposed a CNN-based superpixel segmentation method.
The method generates superpixels from a single unlabeled image via a CNN
by maximizing mutual information. Through the method, We investigated the
CNNSs’ prior for superpixels. In practice, our proposed method shows better ASA
and BR than baseline methods, when the number of superpixels is small. From
the comparison results, we determine that the structure of CNNs has better prior

to segment pixels than the hand-crafted color- and position-based objective.
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We next proposed the superpixel convolution and superpixel dilated convo-
lution. These convolution operations are designed for superpixel images and the
generalization of convolution operations on image domains. We built a superpixel-
based segmentation architecture through superpixel pooling and our proposed
convolution operations and compared it with general CNNs. In the foreground
segmentation task, our superpixel-based segmentation method demonstrated ef-
fectiveness and outperformed the general CNNs. The results indicate that the
detailed information preservation by superpixels improved the segmentation ac-
curacy for the CNNs.

Both the proposed superpixel segmentation and the superpixel convolution
provided good insight suggesting that the superpixels could potentially improve
the CNNs’ performance. However, they were used independently; in other words,
the superpixel segmentation and image segmentation schemes were separated.
Thus, we finally proposed the end-to-end framework, which integrates super-
pixel segmentation into general CNNs. Our proposed method views the general
downsampling operation as a centroid sampling operation and implicitly gener-
ates superpixels at downsampling layers. The method demonstrated its efficacy
and efficiency compared to the trainable decoder and the atrous convolutions on
several tasks. Our proposed method can introduce existing CNN architectures
without a change in their feed-forward path. Therefore, we expect to apply it to

a wide range of applications.

6.2 Future work

Generated superpixels by our proposed superpixel segmentation method depends
on the initialization of CNN parameters. Thus, the generated superpixels will
be different even if the same input and the same CNN architecture are used.
Depending on the application, this property may be a drawback. However, it
also leads to an extension to Bayesian inference and an understanding of the im-
age. For example, one can obtain several results from different initial parameters
and then computes the variance. One can use the variance for segmentation to

refine the results. Moreover, the regions having large variance may denote the
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essential difficulty of segmentation. Therefore, we consider the extension to be
an important direction.

Our proposed end-to-end framework generates clusters in the back end. This
scheme may be able to simplify instance and panoptic segmentation frame-
works. The recently developed instance and panoptic segmentation frameworks
are slightly complex. For example, Mask R-CNN [He et al., 2017| first generates
object candidates and then predicts bounding boxes, class labels, and instance
masks. The framework is generally called a two-stage detector and is known to be
complex to implement. PanopticFPN [Kirillov et al., 2019a], which is a panoptic
segmentation method, is also based on a two-stage framework. If our proposed
method can cluster the pixels for each instance, the instance/panoptic segmen-
tation framework may be realized with the same framework as semantic segmen-
taion. As shown in Figure 5.4, the generated cluster fits the instances, although
oversegmented. If we can generate super nodes that represent the instance and
cluster the segments, the instance/panoptic segmentation can be implemented as
a node-wise classification model similar to the CNN-based semantic segmentation

scheme.
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Appendix A

Graph Laplacian

We provide propositions for the unnormalized and normalized graph Laplacian
matrices. In the following, we assume that the graph is an undirected, weighted
graph with weight matrix W where w;; = w;; > 0.

Then, the unnormalized graph Laplacian L satisfies Proposition
1 [Von Luxburg, 2007].

Proposition 1.

e For every vector, f € RY we have

N
FTLf =5 S Waldi— £ (A1)

ij=1
e L is symmetric and semi-positive definite.

e The smallest eigenvalue of L is 0; the corresponding eigenvector is the con-

stant one vector 1.

e L has N non-negative, real-valued eigenvalues 0 = Ay < Ay < -+ < Ay
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Proof.

e Since the diagonal values of the degree matrix are defined as the sum of the

column values of the adjacency matrix, D;; = > i Wij,

N N
fILf=f"Df —fTWf= Z Diif? = > fifiWy

ijfl
(Z Diif} —2 Z fifiWe + Z Dﬂf2)
i,7=1
= % <Z Wi f7 =2 Z filiWij + Z ijiff)
ij=1 ij=1 di=1
1 N
SIS w- (A2

e Since the sum of the symmetric matrices is the symmetric matrix, L is
symmetric. Moreover, I is a non-negative matrix, and f'Lf is also non-
negative for all f € RY. Therefore, since the quadratic form is non-negative

for all f € RN, L is semi-positive definite [Strang, 2006].

e From the definition of L and D, L1 = 0, and since L is semi-positive

definite, the smallest eigenvalue of L is 0.

e 0 =) < )\ <--- < )\ is a direct consequence of the above propositions.

]

Also, the normalized graph Laplacian L., satisfies following Proposi-
tion [Von Luxburg, 2007].

Proposition 2

o For every f € RY, we have

" Lyormf = ZWW ( Vi \/’;])_) (A.3)

’le
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e )\ is an eigenvalue of L., with eigenvector u if and only if X is an eigenvalue

of Lyporm with eigenvector w = D/24,.

e )\ is an eigenvalue of L., with eigenvector u if and only if A and u solve the

generalized eigenproblem Lu = ADu.

e (0 is an eigenvalue of L., with the constant one vector 1 as an eigenvector;

0 is an eigenvalue of Lo with eigenvector DY/?1.

Lyorm and L., are positive semi-definite and have N non-negative real-

valued eigenvalues 0 = A\ < -+ < Ap.
Proof.

e It can be proved similarly to Proposition 1 as follows:

fTLf _ fTIf . fTDfl/QWDfl/%f

R

2 fj 2
(Zf _221mﬂm\ﬁDjj+2fj>
]' 1.72 ]Z
(S )
2

fi
ZWH ( Vi \/D_jj> : (A.4)

e From the eigenvalue equation Lymw = A\w,

D7Y2LD7 V2 = \w,
D'LD V2w = D7V \w,
LoD 2w =AD"y

Therefore, u = D~Y?w is derived, and by multiplying it by D'/? from the

left, w = D'?u is derived.
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e The proposition is given by multiplying the eigenvalue equation, L.,u = Au,

by D from the left.

e From L1 =0, L, 1 = D7'L1 = 0, and then LyomD'?1 = 0 is derived

from L,,1 = 0 and the above propositions.

® L,om is semi-positive definite since its quadratic form is non-negative, and
then L,y is also semi-positive definite since w = DY?u. Moreover, Lpom

and L., have 0 eigenvalues. Thus, 0 = A\; < --- < Ay is derived.
O
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Appendix B

Normalization Layers for Neural

Networks

B.1 Batch Normalization

Training neural networks is complicated by the fact that the distribution of each
layer " s inputs changes during training. This fact is sometimes referred to as an
internal covariant shift. The first work tackled this problem in the scenario of
the deep neural networks is batch normalization [loffe and Szegedy, 2015]. Batch

normalization normalizes the batched inputs as follows:

(0 — ()
Q) — x—”(x) (B.1)

v o (20)% + os7
where p(-) and o(-) denote the mean and the standard deviation, and € is a
hyperparameter to avoid division by zero. Note that we assume that z(9 €
REB*XHXW g the image, where B, H, and W denote the batch size, the image
height, and the image width. When training time, p(-) and o(z) are computed

as follows:
1
©)Y . (c)
u(w )._—bghwxb’h’w’ (B.2)
@y .- 1 S (2, — n (2 ’ B.3
o (z\9)": Ty w(z9)) (B.3)
b,h,w
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where 2(¢) € RBE*HXW denotes the c-th channel of the inputs. Typically, after the
normalization, the normalized input is transformed by trainable affine transfor-

mation as follows:
70 = @z 4 5(0)’ (B.4)

where ol € R, and 39 € R denote trainable parameters.

In inference time, a single input is fed into the model; hence, p (x(c)) and
o (:L‘(I)) cannot be computed. Therefore, batch normalization computes the mov-
ing averages of mean and variance and uses them instead.

Batch normalization allows us to use much higher learning rates and to be
less careful about initialization. Moreover, because of them, the model requires
much fewer training steps compared to models that do not adopt the batch nor-
malization. However, it has a limitation: when z(© consists of a small number
of batches, the batch normalization does not give the model any improvement.
Therefore, the normalization methods not depending on batch size are widely
studied [Ulyanov et al., 2016, Wu and He, 2018, Ba et al., 2016]. In the next sec-
tion, we describe instance normalization [Ulyanov et al., 2016], which is used in

our work.

B.2 Instance Normalization

Instance normalization [Ulyanov et al., 2016] is the same as batch normalization
except that it normalizes the input per sample. The mean and the variance for

instance normalization are computed as follows:

c 1 c
HIN (ffz() )> = HW Z:El(),i)z,w’ (B.5)
h,w
o\ ? 1 c c 2
OIN (SL’Z() )) = _HW <l’1()7})17w — MIN ($£ ))> , (BG)
h,w

where zl()c) € R™T*W denotes the c-th channel of the b-th batch in the inputs. The

computed parameters are used to normalize the inputs with eq. (B.4).
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B.3 Layer Normalization

Although batch normalization and instance normalization compute the mean
and variance over spatial dimension, layer normalization [Ba et al., 2016] includes
channel dimension to compute them.

The mean and the variance for layer normalization are computed as follows:

1
o (e)
H1LN (xb) = COHW ha beﬁ’w’ (B'7)
2 1 S (249 2

Each notation is the same as eq. (B.5). The computed parameters are used to

normalize the inputs as follows:

(c) _
20 _ Ty — by (1) (B.9)

Vorn () + e

B.4 Group Normalization

Instance normalization and layer normalization are effective for training sequen-
tial models, such as RNN, LSTM, and transformer [Vaswani et al., 2017], and
generative models, such as GANs [Goodfellow et al., 2014]. However, these nor-
malization layers have limited success in visual recognition.

Group normalization [Wu and He, 2018] is proposed for computer vision
tasks, such as object detection and image segmentation, and produce better re-
sults than other normalization layers, especially, when the batch size is small.
Group normalization divides channels into some groups and computes the mean
and variance for each group in the same way as layer normalization.

Let G = g1,...,9n be a set of the groups. The mean and the variance are

computed as follows:

<gn>> 1 T B.10

flan <xb g HW]|gy| hw,cEg T .
(gn>> __ ! ( (© _ ( (gn)>>

o (m = E Ty — Hen | @ , (B.11)
b HW|g,| , £= A0 '
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Figure B.1: Ilustration of various normalization layers. N, (H, W), and

C denote the batch axis, the spatial axes, and the channel axis, respectively.

The figure is taken from [Wu and He, 2018].

where :1:1(7 ") denotes the gn group of the b-th batch in the inputs, and |g,| is the

group size. The inputs are normalized as follows:

o _ T by (=)
Ty = , S.t. ¢ € gp. (B.12)

b
\/O'GN (xlgg”> + €

Finally, we illustrate all normalization layers in Figure B.1.
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