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ABSTRACT

Optical flow estimation in onboard cameras is an important task in automatic driving and advanced driver-
assistance systems. However, there is a problem that calculation is mistakable with high contrast and high
speed. Event cameras have great features such as high dynamic range and low latency that can overcome these
problems. Event cameras report only the change in the logarithmic intensity per pixel rather than the absolute
brightness. There is a method of estimating the optical flow simultaneously with the luminance restoration from
the event data. The regularization using the L1 norm of differentiation is insufficient for spatially sparse event
data. Therefore, we propose to use the focus of expansion (FOE) for regularization of optical flow estimation
in event camera. The FOE is defined as the intersection of the translation vector of the camera and the image
plane. The optical flow becomes radial from the FOE excluding the rotational component. Using the property,
the optical flow can be regularized in the correct direction in the optimization process. We demonstrated that
the optical flow was improved by introducing our regularization using the public dataset.
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1. INTRODUCTION

In automatic driving and advanced driver-assistance systems, optical flow (OF) is frequently used to recognize
moving objects using in-vehicle camera. However, it is difficult to calculate the OF with high contrast and high
speed. Against these problems, bio-inspired image sensors named event cameras have been developed1.2 Event
cameras have excellent characteristics such as high temporal resolution and high dynamic range. The output
of these cameras is not image frames like in a standard camera; rather, these cameras output an asynchronous
sequence of reports of intensity change at each pixel. Therefore, computer vision algorithms specialized for
event cameras are required. In the conventional OF estimation method,3 intensity and OF are simultaneously
estimated from the event data by optimizing the cost function consisting of the event data term, the constraints
of the OF, and the smoothness term with the L1 norm. However, regularization assuming spatial smoothness for
sparse event data is insufficient. Therefore, we propose the novel regularization of the OF estimation in event
camera utilizing the focus of expansion (FOE).

2. BACKGROUND

The FOE is defined as the intersection of the translation axis of the camera motion and the image plane. By
introducing the FOE, it is possible to obtain motion parameters from fewer corresponding points with little
calculation under the condition that the monocular camera is fixed to the car body.4 The FOE is also used as
a constraint when determining the OF due to the vehicle’s ego-motion.5 The FOE has an important property
that the OF becomes radial from it when the rotations component is removed from the OF of the background
point. We utilize this property as regularization for the OF estimation from an In-vehicle event camera.
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Figure 1. System flow.

3. METHOD

Our method is roughly divided into three steps and executed in the flow shown in Fig. 1. Similar to the OF
estimation method,3 we have a time window whose temporal length is T , which we discretize into K cells, which
are each of δt length. The second and third steps are executed for all frames in the sliding time window after
estimation of the OF and intensity. The cost function is described as (1):

E(L,u) =

∫
S

∫
T

(λ1∥ux∥1 + λ2∥ut∥1 + λ3∥Lx∥1 + λ4∥⟨Lx · δtu⟩+ Lt∥1 + λ5hθ(L− L(tp)))dtdx

+

∫
I

ϕ(x)∑
i=2

∥L(ti)− L(ti−1)− θρi∥1dx+ λfoe∥u′ − u′
foe∥22

(1)

The last term is our proposed regularization term, and the other terms are same as conventional ones.3 Consid-
ering convexity, we optimized the two respectively. The notation of the last regularization term is explained in
Sec. 3.3.

3.1 Intensity and optical flow estimation

In this step, we optimize a part of the cost function excluding the last term by the primal dual algorithm.
The cost function in Bardow’s method3 consists roughly three types of terms: one for spatial and temporal
smoothness, one for OF, and one for fitting to event data. The smoothness term is widely used in variational
methods, such as TV-L1, and has been used successfully in computer vision algorithms67 (for example, image
de-noising, OF estimation and segmentation). The second term, for OF, evaluates the consistency between the
intensity and the motion vector; it reflects the classical definition of OF.8 The third term is unique for event
cameras and evaluates whether the intensity conforms to the events generation model. More specifically, if the
difference between the luminance value at the time when an event occurred and the value at a previous time are
not equal to the threshold, a penalty is given by that amount.

3.2 Yaw rate estimation

In this step, we estimate the yaw angular velocity ΩY from the estimated OF. Assuming a rotational motion ΩY

around the y-axis by steering the wheel operation when turning the corner and introducing the FOE coordinate
(x0, y0), ΩY is determined by the following equation:

ΩY,(x,y) = f
ux,(x,y)(y − y0)− uy,(x,y)(x− x0)

(f2 + x2)(y − y0)− xy(x− x0)
(2)

In theory, ΩY can be obtained from only one correspondence point.4 Since the correspondence point is a form
of dense OF estimated from the event, we propose the proprietary yaw estimation method. In our proposal
method, ΩY is determined as the mode value in the place where the event occurred in the cells before and after
the frame. The place where the event occurred to be more reliable because the OF is estimated based on the
luminance restored from the event data depending on the OF term in (1). Conversely, since other parts are
estimated depending on the smoothness term in (1), the reliability is considered to be low.



3.3 FOE-based regularization

This step is the main part of our method; FOE-based regularization that constrain estimated the OF to follow

the FOE. By using the components due to the rotation of the OF uΩ
(x,y) =

(
(f2 + x2)Ω̂Y /f, xyΩ̂Y /f

)
, the

relationship between the OF and the FOE is written as the following equation (3).

ux,(x,y) − uΩ
x,(x,y)

uy,(x,y) − uΩ
y,(x,y)

=
x− x0

y − y0
(3)

The important property of the FOE that we previously mentioned is represented in (3). Here the rotational
component is removed (u′ = u − uΩ). An arrow extending from the FOE to each coordinate point is denoted
by ufoe,(x,y) = (x − x0, y − y0), and an OF in which the length is made equal to u′ is represented by u′

foe =
ufoe · ∥u′∥/∥ufoe∥. The regularized OF û′ can be obtained by internally dividing u′ and u′

foe by a ratio
α (û′ = (1 − α)u′ + αu′

foe). It is possible to regularize the orientation of the OF to follow the FOE while

maintaining this size. After this operation, we returned the excluded rotation components (û = û′ + uΩ). The
FOE-based regularization of the OF is performed for each frame after the luminance reconstruction, and the
three steps are repeated across the sliding time window.

4. EXPERIMENT

In this section, we evaluate the effectiveness of our proposed method based on the experiment results. The dataset
we used is Multi-Vehicle Stereo Event Camera dataset (MVSEC),9 which includes driving scenes in urban areas
in day and night. An Event-based camera used in the dataset is mDAVIS-346B, which is the improved version
of DVS1281 and DVS240;2 it can record event data with a spatial resolution 260 × 346. The ground truth OF
can be obtained by combining depth data and rotational motion data from velodyne in this dataset.10

4.1 Outline of Experiment

The evaluation metric is the average end-point error (AEE), defined as the desitance between the end points of
estimated and ground truth flow vectors:

AEE =
1

N

∑
x,y

∥∥∥∥( ux(x, y)est
uy(x, y)est

)
−
(

ux(x, y)gt
uy(x, y)gt

)∥∥∥∥
2

(4)

As with what is done in EV-FlowNet,10 when computing this metric, we used only the pixels where the event
occurred. We used outdoor driving sequences named outdoor day1, whose length corresponds to 30,000 frames.
In order to show the effectiveness of our regularization, comparison was made in the following two cases.

• Bardow3’s method

• Our method, including FOE-based regularization

We set δt to 7.5 ms, α to 0.5, and K to 128. For the sake of simplicity, it was assumed that the optical axis
of the camera coincided with the traveling direction of the car and the coordinate of the FOE was located at the
center of the image.

4.2 Experimental result

The AEE of the OF with our regularization is 24.82 pix/s, which is smaller than one without our regularization
28.36 pix/s. and it can be said that the more correct OF was obtained by our effective regularization. Since the
estimation is performed with a considerably small time width of 7.5 ms, the error becomes large when evaluating
with metric of 1 s unit, Fig. 2 is visualization of the result. As you can see from the mixture of different colors,
the direction of the flow estimated in Bardow’s method3 is mistaken.



Figure 2. Result images. The table entries from left to right: input events, estimated image, ground truth image, Bardow’s
OF, estimated OF with our regularization, ground truth OF.

5. CONCLUDION

We proposed the FOE-based regularization of the OF to compensate for the imperfection of estimating from
event data. For our regularization, we utilized the important properties of the FOE, which is derived from the
definition of the FOE and the features of in-vehicle camera movement. It is possible to correct the flow direction
by removing the rotational component of the OF and following the FOE.

In this paper, we showed the effect of regularization using the FOE while considering only the background
point; however, our method has the disadvantage of neglecting moving objects that are not background points.
As a future prospect, it is necessary to have an algorithm that judges whether a pixel is a background point to
be corrected or a point included in a moving object that should not be modified in regularization.
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